TABLE OF CONTENTS

DEAN’S WELCOME .. 3
HISTORY OF THE UNIVERSITY .. 4
ADMINISTRATION UNITS FOR INTERNATIONAL PROGRAMMES................................. 6
DEPARTMENTS OF FACULTY OF ENGINEERING... 9
ACADEMIC CALENDAR... 22
THE MECHATRONICS ENGINEERING UNDERGRADUATE PROGRAM 26
 Information about the Program ... 26
 Credit System .. 29
 Guideline (List of Subjects/Semesters) .. 29
 Work and Fire Safety Course ... 31
 Internship ... 31
 Physical Education .. 31
 Optional Courses ... 31
 Pre-degree Certification ... 32
 Thesis .. 32
 State Exam (Final Exam) .. 33

Course Descriptions for Mechatronical Engineering BSc .. 35
 Subject group “Basic Natural Sciences” .. 35
 Subject group “Economics and Humanities” ... 60
 Subject group “Professional Subjects” ... 71
 Subject group “Differentiated Professional Subjects” ... 106
 Diploma .. 119

Model Curriculum of Mechatronics Engineering BSc – Specialization in
Mechatronic Systems .. 120
DEAN’S WELCOME

Welcome to the Faculty of Engineering!
This is an exciting time for you, and I encourage you to take advantage of all that the Faculty of Engineering UD offers you during your bachelor’s or master's studies. I hope that your time here will be both academically productive and personally rewarding. Think creatively and be confident.

The Faculty of Engineering of the University of Debrecen is at the forefront of the education and training of engineers in the North-Great-Plain Region of Hungary. It is a dynamically developing Faculty with over 3000 students and a highly-qualified and enthusiastic teaching staff of about 80 members. In order to optimize the quality of training the Faculty continuously strives to expand the number of industry and educational partners at home and abroad.

The Faculty was awarded the Quality Prize in 2011 by the Ministry of Education in recognition of its efforts in this field.

I wish you every success in your studies and hope to meet you personally in the near future.

With best wishes

Edit Szűcs
Dean
The history of Debrecen’s higher education dates back to the 16th century. The Calvinist Reformed College, established in 1538, played a central role in education, teaching in the native language and spreading Hungarian culture in the region as well as in the whole country. The College was a sound base for the Hungarian Royal University, founded in 1912. Apart from the three academic faculties (arts, law, theology) a new faculty, the Faculty of Medicine was established, and the University soon became one of the regional citadels of Hungarian higher education. Today, University of Debrecen is classified as “University of National Excellence” and offers the highest number of academic programs in the country, therefore it is considered to be one of the best universities in Hungary. Its reputation is the result of its quality training, research activities and the numerous training programs in different fields of science and engineering in English. With 14 faculties and a student body of almost 30,000, out of which about 3700 are international students, the University of Debrecen is one of the largest higher education institutions in Hungary.

The history of the Faculty of Engineering dates back to 1965, when the Technical College was established. In 1972 it was renamed Ybl Miklós Polytechnic and in 1995 it became part of Kossuth Lajos University. In 2000 the Faculty of Engineering became part of the integrated University of Debrecen.

In 2005 the Bologna System was introduced which supports the competitiveness of qualifications received at the University of Debrecen against universities all over Europe. The Faculty of Engineering is practice-oriented and develops skills required for the current needs of the national and international labour market. The teaching staff is involved in numerous domestic and international research and design projects. The recently-opened new building wing with its ultra-modern design hosts several lecture halls, seminar rooms and laboratories equipped with the latest technology. Our students are provided with practical knowledge, training and field practice from numerous prestigious domestic and multi-national industry partners. The internship periods are excellent opportunities for students to experience how theory is put into practice at the most renowned industry representatives and become more successful in the labour market of this highly competitive sector. Students learn how to work in the working environment of multi-national companies and adapt to challenges easily. After graduation they will be able to work at a strategic decision-making level, giving priority to efficiency and engineering ethics.

The Faculty of Engineering offers a great variety of BSc, MSc courses and post-graduate training courses tailored to the needs of the rapidly changing world of engineering and focusing on European and international trends. In 2011 the Faculty of Engineering launched engineering trainings in English. In order to optimize the quality of training, the Faculty continuously strives to expand the number of industrial and educational partners at home and abroad.

The Faculty of Engineering has been a pioneer in the introduction of Quality Management System at faculty level to measure and evaluate the efficiency of its education and
teaching staff in order to improve the quality of education and training from the feedback received.

The Faculty of Engineering has a vivid student life. There is a film club waiting for movie buffs and the door of the Faculty library is always open. The library is not only the host to the latest technical books, exhibitions and tea afternoons with invited speakers, but students can also purchase theatre and concert tickets from the librarians. The Borsos József Dormitory is also a hub of activities for students.

The increasing number of international students brings cultural and ethnic diversity to the faculty.

Our aim is to aid students to become efficient members of the labour market and enrich the world of engineering in Hungary and abroad with their knowledge and expertise.
ADMINISTRATION UNITS FOR INTERNATIONAL PROGRAMMES

COORDINATING CENTER FOR INTERNATIONAL EDUCATION
98, Nagyerdei Boulevard, Debrecen 4032
Telephone: +36-52-512-900/62796
E-mail: info@edu.unideb.hu

Program Director (Non-Medical Programmes) Dr. László Kozma
Admission Officer Ms. Ibolya Kun
Administrative Assistant Ms. Dóra Deme
Administrative Assistant Ms. Lilla Fónai
Administrative Assistant Mr. Ádám Losonczi
Administrative Assistant Ms. Annamária Rácz

The Coordinating Center for International Education supports the international degree programmes of the University of Debrecen in giving new students information on admission and entrance exam. It has tasks in promoting and is in charge of tasks like enrolment, study contracts, modifying student status or degree programme, activating student status, modifying students’ personal data, requesting and updating student cards, providing certificates for the Immigration Office (for residence permit), issuing student status letters and certificates on credit recognition, concluding health insurance contract and providing Health Insurance Card, helping students with visa process application.

STUDENT ADMINISTRATION CENTER
1, Egyetem Square, Debrecen H-4032 (basement of Kossuth Lajos Dormitory II)

This administration unit is in charge of registering new students, checking students’ FIR data, charging tuition fees and other fees, transferring scholarship, issuing diploma/degree certificate.
INTERNATIONAL OFFICE AT THE FACULTY OF ENGINEERING
2-4, Ótemető Street, Debrecen H-4028
Telephone: +36-52-415-155/78709

Head of International Office
room 122
Zsolt Tiba PhD habil.
tiba@eng.unideb.hu

International Relations Officer
room 123
Ms. Judit Bak
bakjudit@eng.unideb.hu

International Relations Officer
room 123
Ms. Erika Thomas
thomas.erika@eng.unideb.hu

International Relations Officer
room 124
Ms. Zita Popovicsné Szilágyi
szilagyizita@eng.unideb.hu

International Relations Officer
room 206
Ms. Ágnes György
agnes@eng.unideb.hu

The International Office has been functioning since 2014 in order to ensure the smooth running of the international degree courses. The office is responsible for student administration (full-time students, full-time transfer students, visiting/Erasmus students), providing certificates for students, considering and accepting requests, solving problems related to course registration, giving information about internship, final exam, thesis, etc.
DEAN’S OFFICE
Faculty of Engineering
2-4, Ótemető Street, Debrecen H-4028

Dean: Ms. Edit Szűcs Prof. Dr. habil.
E-mail: dekan@eng.unideb.hu

Vice-Dean for Educational Affairs: Géza Husi PhD habil.
E-mail: husigeza@eng.unideb.hu

Vice-Dean for Scientific Affairs: Ferenc Kalmár PhD
E-mail: kalmarf@eng.unideb.hu

Head of Directory Office: Ms. Noémi Dr. Bíró Siposné
E-mail: bironoemi@eng.unideb.hu
DEPARTMENTS OF FACULTY OF ENGINEERING

- Department of Air- and Road Vehicles
- Department of Architecture
- Department of Basic Technical Studies
- Department of Building Services and Building Engineering
- Department of Civil Engineering
- Department of Engineering Management and Enterprise
- Department of Environmental Engineering
- Department of Mechanical Engineering
- Department of Mechatronics
- Off-Site Department of Aviation Engineering

DEPARTMENT OF AIR- AND ROAD VEHICLES

2-4 Ótemető street, Debrecen, H-4028, room 120, Tel: +36-52-512-900 / 77742

<table>
<thead>
<tr>
<th>name, position</th>
<th>e-mail, room number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Géza Husi Ph.D. habil. Associate Professor, Head of Department</td>
<td>husigeza@eng.unideb.hu Building A, room 120</td>
</tr>
<tr>
<td>Ms. Marianna Ricz, Administrative Assistant</td>
<td>ricz mariann@eng.unideb.hu Building A, room 120</td>
</tr>
</tbody>
</table>

DEPARTMENT OF ARCHITECTURE

2-4, Ótemető Street, Debrecen, H-4028, room 409, Tel: +36-52-512-900 / 78704

<table>
<thead>
<tr>
<th>name, position</th>
<th>e-mail, room number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamás Szentirmai DLA, Associate Professor, Head of Department</td>
<td>szentirmai.tamas@gmail.com room 409</td>
</tr>
<tr>
<td>Antal Puhl DLA, Professor</td>
<td>puhl@puhlarchitect.hu room 409</td>
</tr>
<tr>
<td>Balázs Falvai DLA, Associate Professor</td>
<td>balazs@dmbmuterem.hu room 409</td>
</tr>
</tbody>
</table>
Péter Kovács DLA, Associate Professor kovacs.pe@chello.hu room 409
Dávid Török DLA, Associate Professor david@dmbmuterem.hu room 409
Gábor Zombor DLA, Collage Associate Professor zombor@monomorph.hu room 409
Miklós János Boros DLA, Senior Lecturer boros.miklos.janos@gmail.com room 409
Ms. Edit Huszthy DLA, Senior Lecturer huszthyedit@gmail.com room 409
Béla Bogdándy PhD, Senior Lecturer bogdandy.bela@gmail.com room 409
Ferenc Kállay, Assistant Lecturer kallay.epitesz@t-online.hu room 409
Ferenc Keller, Master Lecturer kellerfeco@gmail.com room 409
Ms. Anita Tóth-Szél, Administrative Assistant szelanita@eng.unideb.hu room 409
Ferenc Kállay, Assistant Lecturer kallay.epitesz@t-online.hu room 409
<table>
<thead>
<tr>
<th>Name</th>
<th>Position</th>
<th>E-mail Address</th>
<th>Room Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imre Kocsis Ph.D.</td>
<td>College Professor, Head of Department</td>
<td>kocsisi@eng.unideb.hu</td>
<td>ground floor 2</td>
</tr>
<tr>
<td>Gusztáv Áron Szíki Ph.D.</td>
<td>College Professor</td>
<td>szikig@eng.unideb.hu</td>
<td>ground floor 7</td>
</tr>
<tr>
<td>Ms. Mária Krauszné Princz Ph.D.</td>
<td>Associate Professor</td>
<td>pmaria@delfin.unideb.hu</td>
<td>ground floor 4</td>
</tr>
<tr>
<td>Balázs Kulcsár Ph.D.</td>
<td>Associate Professor</td>
<td>kulcsarb@eng.unideb.hu</td>
<td>ground floor 4</td>
</tr>
<tr>
<td>Ms. Rita Nagyné Kondor Ph.D.</td>
<td>Associate Professor</td>
<td>rita@eng.unideb.hu</td>
<td>ground floor 7</td>
</tr>
<tr>
<td>Csaba Gábor Kézi Ph.D.</td>
<td>College Associate Professor</td>
<td>kezicsaba@science.unideb.hu</td>
<td>ground floor 7</td>
</tr>
<tr>
<td>Ms. Adrienn Varga Ph.D.</td>
<td>College Associate Professor</td>
<td>vargaa@eng.unideb.hu</td>
<td>ground floor 5</td>
</tr>
<tr>
<td>Ms. Gyöngyi Szanyi, Assistant Lecturer</td>
<td></td>
<td>szanyi.gyongyi@science.unideb.hu</td>
<td>ground floor 6</td>
</tr>
<tr>
<td>Ms. Éva Csernusné Ádámkó, Assistant Lecturer</td>
<td></td>
<td>adamko.eva@eng.unideb.hu</td>
<td>ground floor 3/1</td>
</tr>
<tr>
<td>Ms. Erika Perge, Senior Lecturer</td>
<td></td>
<td>perge@eng.unideb.hu</td>
<td>ground floor 6</td>
</tr>
<tr>
<td>Name</td>
<td>Position</td>
<td>E-mail</td>
<td>Room Number</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>---------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Attila Vámosi</td>
<td>Master Lecturer</td>
<td>vamosi.attila@eng.unideb.hu</td>
<td>ground floor 5</td>
</tr>
<tr>
<td>Ms. Dóra Sebők-Sipos</td>
<td>Administrative Assistant</td>
<td>dorasipos@eng.unideb.hu</td>
<td>ground floor 3/1</td>
</tr>
<tr>
<td>Ferenc Kalmár Ph.D.</td>
<td>College Professor, Vice-Dean for Scientific Affairs</td>
<td>fkalmar@eng.unideb.hu</td>
<td>room 121/324.7</td>
</tr>
<tr>
<td>Imre Csáky Ph.D.</td>
<td>Associate professor, Head of Department</td>
<td>imrecsaky@eng.unideb.hu</td>
<td>room 302/c</td>
</tr>
<tr>
<td>Ákos Lakatos Ph.D.</td>
<td>Associate Professor, Deputy Head of Department</td>
<td>alakatos@eng.unideb.hu</td>
<td>room 302/a</td>
</tr>
<tr>
<td>Ms. Tünde Klára Kalmár Ph.D.</td>
<td>Associate Professor</td>
<td>kalmar_tk@eng.unideb.hu</td>
<td>room 324/5</td>
</tr>
<tr>
<td>Zoltán Verbai Ph.D.</td>
<td>Senior Lecturer</td>
<td>verbai@eng.unideb.hu</td>
<td>room 324/2</td>
</tr>
<tr>
<td>Ferenc Szodrai Ph.D.</td>
<td>Senior Lecturer</td>
<td>szodrai@eng.unideb.hu</td>
<td>room 324/8</td>
</tr>
<tr>
<td>Attila Kerekes Ph.D.</td>
<td>Senior Lecturer</td>
<td>kerekesa@eng.unideb.hu</td>
<td>room 324/3</td>
</tr>
<tr>
<td>Béla Bodó, Master Lecturer</td>
<td></td>
<td>bela.bodo@eng.unideb.hu</td>
<td>room 324/4</td>
</tr>
<tr>
<td>Name, Position</td>
<td>E-mail</td>
<td>Room</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>--------</td>
<td>------</td>
<td></td>
</tr>
<tr>
<td>Sándor Hámori, Assistant Lecturer</td>
<td>sandor.hamori@eng.unideb.hu</td>
<td>324/8</td>
<td></td>
</tr>
<tr>
<td>Gábor L. Szabó, Assistant Lecturer</td>
<td>l.szabo.gabor@eng.unideb.hu</td>
<td>324/2</td>
<td></td>
</tr>
<tr>
<td>András Zöld Ph.D, Emeritus</td>
<td>profzold@yahoo.fr</td>
<td>324/3</td>
<td></td>
</tr>
<tr>
<td>Ms. Lola Csibi, Administrative Assistant</td>
<td>lola@eng.unideb.hu</td>
<td>302</td>
<td></td>
</tr>
<tr>
<td>Imre Kovács Ph.D, College Professor, Head of Department</td>
<td>dr.kovacs.imre@eng.unideb.hu</td>
<td>212/e</td>
<td></td>
</tr>
<tr>
<td>József Garai Ph.D. habil., Professor</td>
<td>garai.jozsef@eng.unideb.hu</td>
<td>212/c</td>
<td></td>
</tr>
<tr>
<td>György Csomós Ph.D, College Professor</td>
<td>csomos@eng.unideb.hu</td>
<td>209/c</td>
<td></td>
</tr>
<tr>
<td>János Major Ph.D. habil., College Professor</td>
<td>drmajorjanos@eng.unideb.hu</td>
<td>212/c</td>
<td></td>
</tr>
<tr>
<td>Ms. Kinga Nehme Ph.D, Associate Professor</td>
<td>knehme@eng.unideb.hu</td>
<td>209/b</td>
<td></td>
</tr>
<tr>
<td>Ms. Herta Czédli Ph.D, College Associate Professor</td>
<td>herta.czedli@eng.unideb.hu</td>
<td>209/e</td>
<td></td>
</tr>
<tr>
<td>Ms. Gabriella Hancz Ph.D, College Associate Professor</td>
<td>hgabi@eng.unideb.hu</td>
<td>209/a</td>
<td></td>
</tr>
</tbody>
</table>

DEPARTMENT OF CIVIL ENGINEERING
2-4 Ótemető street, Debrecen, H-4028, room 209, Tel: +36-52-512-900 / 78701
<table>
<thead>
<tr>
<th>Name</th>
<th>Email</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zoltán Bereczki, Senior Lecturer</td>
<td>bereczki.zoltan@eng.unideb.hu</td>
<td>212</td>
</tr>
<tr>
<td>László Radnay Ph.D, College Associate Professor</td>
<td>laszlo.radnay@eng.unideb.hu</td>
<td>209/c</td>
</tr>
<tr>
<td>Zsolt Varga Ph.D, Senior Lecturer</td>
<td>vzs@eng.unideb.hu</td>
<td>119</td>
</tr>
<tr>
<td>Ms. Krisztina Kozmáné Szirtesi, Assistant Lecturer</td>
<td>kszk@eng.unideb.hu</td>
<td>212/b</td>
</tr>
<tr>
<td>Ms. Beáta Pataki, Assistant Lecturer</td>
<td>pataki.bea@eng.unideb.hu</td>
<td>209/e</td>
</tr>
<tr>
<td>Ádám Ungvárai, Assistant Lecturer</td>
<td>ungvrai@eng.unideb.hu</td>
<td>212/a</td>
</tr>
<tr>
<td>János Bíró, Master Teacher</td>
<td>biroj@eng.unideb.hu</td>
<td>119</td>
</tr>
<tr>
<td>Zsolt Martonosi, Master Teacher</td>
<td>martonosizs@eng.unideb.hu</td>
<td>212/b</td>
</tr>
<tr>
<td>László Tarcsai, Master Teacher</td>
<td>tarcsai@eng.unideb.hu</td>
<td>212/a</td>
</tr>
<tr>
<td>József Kovács, Technical Assistant</td>
<td>j.kovacs@eng.unideb.hu</td>
<td>209/b</td>
</tr>
<tr>
<td>Zsolt Vadai, Master Teacher</td>
<td>vadai@eng.unideb.hu</td>
<td>209/e</td>
</tr>
<tr>
<td>Titusz Igaz, Lecturer</td>
<td>igaz.titusz@gmail.com</td>
<td>212/b</td>
</tr>
<tr>
<td>Name, Position</td>
<td>E-mail, Room Number</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>Ms. Edit Szűcs Dr. habil., Collage Professor, Head of Department</td>
<td>dekan@eng.unideb.hu, room 204/a</td>
<td></td>
</tr>
<tr>
<td>Géza Lámer Ph.D, College Professor</td>
<td>glamer@eng.unideb.hu, room 202/b</td>
<td></td>
</tr>
<tr>
<td>István Budai Ph.D, Associate Professor</td>
<td>budai.istvan@eng.unideb.hu, room 202/a</td>
<td></td>
</tr>
<tr>
<td>Ms. Judit T. Kiss Ph.D, Associate Professor</td>
<td>tkiss@eng.unideb.hu, room 202/a</td>
<td></td>
</tr>
<tr>
<td>Ms. Andrea Emese Matkó Ph.D., College Associate Professor</td>
<td>andim@eng.unideb.hu, room 206</td>
<td></td>
</tr>
<tr>
<td>Ms. Kata Anna Váró Ph.D., College Associate Professor</td>
<td>varokata@eng.unideb.hu, room K3</td>
<td></td>
</tr>
<tr>
<td>János Szendrei Ph.D., Senior Lecturer</td>
<td>szendrei.janos@eng.unideb.hu, room 202/d</td>
<td></td>
</tr>
<tr>
<td>Ms. Éva Dr. Bujalosné Kóczán, Master Teacher</td>
<td>beva@eng.unideb.hu, room 202/c</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Email</td>
<td>Room</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Ms. Éva Diószegiény Zentay, Master Teacher</td>
<td>zentayevi@eng.unideb.hu</td>
<td>202/c</td>
</tr>
<tr>
<td>Ms. Noémi Siposné Bíró, Master Teacher</td>
<td>bironoemi@unideb.hu</td>
<td></td>
</tr>
<tr>
<td>Tibor Balla, Assistant Lecturer</td>
<td>btibor@eng.unideb.hu</td>
<td>202/e</td>
</tr>
<tr>
<td>Attila Halczman, Assistant Lecturer</td>
<td>haat@eng.unideb.hu</td>
<td>202/e</td>
</tr>
<tr>
<td>Ms. Anita Dr. Mikó-Kis, Assistant Lecturer</td>
<td>drkisanita@eng.unideb.hu</td>
<td>202/f</td>
</tr>
<tr>
<td>Róbert Sztányi, Assistant Lecturer</td>
<td>sztanyir@eng.unideb.hu</td>
<td>202/g</td>
</tr>
<tr>
<td>Emil Varga, Assistant Lecturer</td>
<td>emil@eng.unideb.hu</td>
<td>202/g</td>
</tr>
<tr>
<td>Tünde Jenei, Departmental Teacher</td>
<td>jeneit@eng.unideb.hu</td>
<td>202/b</td>
</tr>
<tr>
<td>Gyula Mikula, Departmental Engineer</td>
<td>mark@eng.unideb.hu</td>
<td>202/f</td>
</tr>
<tr>
<td>Ms Ágnes György, Administrative Assistant, Lecturer</td>
<td>agnes@eng.unideb.hu</td>
<td>206</td>
</tr>
<tr>
<td>Ms. Magdolna Anton Sándorné, Administrative Assistant</td>
<td>magdi@eng.unideb.hu</td>
<td>204</td>
</tr>
<tr>
<td>Name, Position</td>
<td>E-mail, Room Number</td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Ms. Ildikó Bodnár Ph.D, College Professor, Head of Department</td>
<td>bodnari@eng.unideb.hu room 312</td>
<td></td>
</tr>
<tr>
<td>Norbert Boros Ph.D, Associate Professor</td>
<td>nboros@eng.unideb.hu room 313</td>
<td></td>
</tr>
<tr>
<td>Ms. Andrea Keczánne Üveges Ph.D, Associate Professor</td>
<td>auveges@eng.unideb.hu room 313</td>
<td></td>
</tr>
<tr>
<td>Dénes Kocsis Ph.D, Senior lecturer</td>
<td>kocsis.denes@eng.unideb.hu room 310</td>
<td></td>
</tr>
<tr>
<td>Sándor Fórián, Master lecturer</td>
<td>forian@eng.unideb.hu room 313</td>
<td></td>
</tr>
<tr>
<td>Ms. Alexandra Truzsi, PhD student</td>
<td>truzsi.alexandra@eng.unideb.hu room 309</td>
<td></td>
</tr>
<tr>
<td>Ms. Andrea Izbékiné Szabolcsik, Assistant Lecturer</td>
<td>szabolcsikandi@eng.unideb.hu room 310</td>
<td></td>
</tr>
<tr>
<td>Lajos Gulyás Ph.D, Emeritus College Professor, Lecturer</td>
<td>lgulyas@eng.unideb.hu room 324/1</td>
<td></td>
</tr>
<tr>
<td>Ms. Andrea Halázné Ercsei, Administrative Assistant</td>
<td>halaszneandi@eng.unideb.hu room 312</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Position</td>
<td>E-mail</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Tamás Mankovits Ph.D.</td>
<td>Associate Professor, Head of Department</td>
<td>tamas.mankovits@eng.unideb.hu</td>
</tr>
<tr>
<td>Lajos Dr. Fazekas Ph.D.</td>
<td>College Professor</td>
<td>fazekas@eng.unideb.hu</td>
</tr>
<tr>
<td>Zsolt Tiba Dr. habil</td>
<td>College Professor</td>
<td>tiba@eng.unideb.hu</td>
</tr>
<tr>
<td>Ms. Ágnes Battáné Gindert-Kele Ph.D.</td>
<td>Associate Professor</td>
<td>battane@eng.unideb.hu</td>
</tr>
<tr>
<td>Sándor Bodzás Ph.D.</td>
<td>Associate Professor, Deputy Head of Department</td>
<td>bodzassandor@eng.unideb.hu</td>
</tr>
<tr>
<td>Levente Czégé, Ph.D.</td>
<td>Associate Professor</td>
<td>czege.levente@eng.unideb.hu</td>
</tr>
<tr>
<td>György Juhász Ph.D.</td>
<td>Associate Professor</td>
<td>juhasz@eng.unideb.hu</td>
</tr>
<tr>
<td>Sándor Hajdu Ph.D.</td>
<td>College Associate Professor, Deputy Head of Department</td>
<td>hajdusandor@eng.unideb.hu</td>
</tr>
<tr>
<td>Sándor Pálinkás Ph.D.</td>
<td>College Associate Professor</td>
<td>palinkassandor@eng.unideb.hu</td>
</tr>
<tr>
<td>József Menyhárt Ph.D.</td>
<td>Senior Lecturer</td>
<td>jozsef.menyhart@eng.unideb.hu</td>
</tr>
<tr>
<td>Name</td>
<td>Position</td>
<td>Email</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Gábor Balogh</td>
<td>Assistant Lecturer</td>
<td>balogh.gabor@eng.unideb.hu</td>
</tr>
<tr>
<td>Krisztián Deák</td>
<td>Assistant Lecturer</td>
<td>deak.krisztian@eng.unideb.hu</td>
</tr>
<tr>
<td>Dávid Huri</td>
<td>Assistant Lecturer</td>
<td>huri.david@eng.unideb.hu</td>
</tr>
<tr>
<td>Zsolt Békési</td>
<td>Assistant Lecturer</td>
<td>zsolt.bekesi@eng.unideb.hu</td>
</tr>
<tr>
<td>Tibor Pálfi</td>
<td>Department Teacher</td>
<td>tibor.palfi@eng.unideb</td>
</tr>
<tr>
<td>Márton Lévai</td>
<td>Engineer Teacher</td>
<td>levai@eng.unideb.hu</td>
</tr>
<tr>
<td>András Gáborá</td>
<td>Department Engineer</td>
<td>andrasgabora@eng.unideb.hu</td>
</tr>
<tr>
<td>Tamás Antal Varga</td>
<td>Department Engineer</td>
<td>varga.tamas@eng.unideb.hu</td>
</tr>
<tr>
<td>Zoltán Gergő Géresi</td>
<td>Assistant</td>
<td>zoltan.geresi@eng.unideb.hu</td>
</tr>
<tr>
<td>Ms. Lilla Csonkáné Dóró</td>
<td>Administrative Assistant</td>
<td>lilla.csonkane@eng.unideb.hu</td>
</tr>
<tr>
<td>Ms. Szandra Sitku</td>
<td>Administrative Assistant</td>
<td>szandra.sitku@eng.unideb.hu</td>
</tr>
<tr>
<td>Name and Position</td>
<td>Email, Room Number</td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>Géza Husi Ph.D. habil. Associate Professor, Head of Department</td>
<td>husigeza@eng.unideb.hu, Building A, room 120</td>
<td></td>
</tr>
<tr>
<td>Péter Tamás Szemes Ph.D., Associate Professor</td>
<td>szemespeter@eng.unideb.hu, Building B, room 3</td>
<td></td>
</tr>
<tr>
<td>János Tóth Ph.D., Associate Professor</td>
<td>tothjanos@eng.unideb.hu, Building B, room 1</td>
<td></td>
</tr>
<tr>
<td>Kornél Sarvajcz, Assistant Lecturer, PhD student</td>
<td>sarvajcz@eng.unideb.hu, Building B, room 1</td>
<td></td>
</tr>
<tr>
<td>Ms. Emese Bánóczy-Sarvajcz, Assistant Lecturer</td>
<td>emese.banoczy@eng.unideb.hu, Building B, room 4</td>
<td></td>
</tr>
<tr>
<td>Gyula Attila Darai, Departmental Engineer</td>
<td>darai@eng.unideb.hu, Building B, room 1</td>
<td></td>
</tr>
<tr>
<td>István Nagy Ph.D., Departmental Engineer</td>
<td>nistvan@eng.unideb.hu, Building B, room 2</td>
<td></td>
</tr>
<tr>
<td>Timotei István Erdei, Departmental Engineer</td>
<td>timoteierdei@eng.unideb.hu, Building B, Robotics Laboratory</td>
<td></td>
</tr>
<tr>
<td>Almusawi Husam Abdulkareem, Departmental Engineer</td>
<td>husam@eng.unideb.hu, Building B, room 5</td>
<td></td>
</tr>
<tr>
<td>Ms. Syeda Adila Afghan, PhD student</td>
<td>adila@eng.unideb.hu, Building B, room 4</td>
<td></td>
</tr>
<tr>
<td>Ms. Marianna Ricz, Administrative Assistant</td>
<td>riczmariann@eng.unideb.hu, Building A, room 120</td>
<td></td>
</tr>
</tbody>
</table>
DEPARTMENT OF AVIATION ENGINEERING
1 Szatke Ferenc street, Debrecen, H-4030, Tel: +36-52-870-270, www.pharmaflight.hu

<table>
<thead>
<tr>
<th>name, position</th>
<th>e-mail, room number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Enikő Földi, Executive Director</td>
<td>training@pharmaflight.hu</td>
</tr>
<tr>
<td>Gyula Győri, Honorary Associate Professor</td>
<td>training@pharmaflight.hu</td>
</tr>
<tr>
<td>Gabriella Illés, Program Coordinator</td>
<td>training@pharmaflight.hu</td>
</tr>
</tbody>
</table>
ACADEMIC CALENDAR

General structure of the academic year:

<table>
<thead>
<tr>
<th>Study period</th>
<th>1<sup>st</sup> week</th>
<th>Registration*</th>
<th>1 week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2<sup>nd</sup> – 7<sup>th</sup> week</td>
<td>Teaching Block 1</td>
<td>6 weeks</td>
</tr>
<tr>
<td></td>
<td>8<sup>th</sup> week</td>
<td>1<sup>st</sup> Drawing Week</td>
<td>1 week</td>
</tr>
<tr>
<td></td>
<td>9<sup>th</sup> – 14<sup>th</sup> week</td>
<td>Teaching Block 2</td>
<td>6 weeks</td>
</tr>
<tr>
<td></td>
<td>15<sup>th</sup> week</td>
<td>2<sup>nd</sup> Drawing Week</td>
<td>1 week</td>
</tr>
</tbody>
</table>

| Exam period | directly after the study period | Exams | 7 weeks |

* Usually, registration is scheduled for the first week of September in the fall semester, and for the first week of February in the spring semester.

ACADEMIC CALENDAR OF THE FACULTY OF ENGINEERING 2018/2019

<table>
<thead>
<tr>
<th>Event</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opening ceremony of the academic year</td>
<td>Sunday 9 September 2018</td>
</tr>
<tr>
<td>Registration week</td>
<td>3-7 September 2018</td>
</tr>
<tr>
<td>Revision week (exams in exam courses may be scheduled during this week)</td>
<td>3-7 September 2018</td>
</tr>
<tr>
<td>1<sup>st</sup> semester study period in MSc and BSc programs</td>
<td>10 September 2018 - 14 December 2018 (14 weeks) In case of finalist courses: 10 September 2018 - 9 November 2018 (9 weeks)</td>
</tr>
<tr>
<td>Career Days – “Industry Days in Debrecen 2018”</td>
<td>11-12 October 2018</td>
</tr>
<tr>
<td>6<sup>th</sup> ISCA ME (International Scientific Conference on Advances in Mechanical Engineering) VI. Exhibition on Mechanical Engineering</td>
<td>11-12 October 2018</td>
</tr>
<tr>
<td>Event</td>
<td>Date/Duration</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Career Days in Environmental Engineering (organised by the Department of Environmental Engineering)</td>
<td>11-12 October 2018</td>
</tr>
<tr>
<td>Career Days in Mechatronics (exhibition, company presentations) (organised by the Department of Mechatronics)</td>
<td>11-12 October 2018</td>
</tr>
<tr>
<td>Conference, entitled “Árkádia” (organised by the Department of Architectural Engineering)</td>
<td>12 October 2018</td>
</tr>
<tr>
<td>Conference, entitled “Problem-Based Learning in Engineering Education” (organised by the Department of Basic Technical Studies)</td>
<td>12 October 2018</td>
</tr>
<tr>
<td>Career Days in Civil Engineering (organised by the Department of Civil Engineering)</td>
<td>7-9 November 2018</td>
</tr>
<tr>
<td>Reporting period I (Drawing week I)</td>
<td>24 - 26 October 2018 (3 working days without scheduled lessons, consultation schedule announced previously)</td>
</tr>
<tr>
<td>Reporting period II (Drawing week II)</td>
<td>10-14 December 2018 (5 working days without scheduled lessons, consultation schedule announced previously)</td>
</tr>
<tr>
<td>Faculty Conference of Scientific Students’ Association</td>
<td>11 December 2018</td>
</tr>
<tr>
<td>1st semester examination period</td>
<td>17 December 2018 - 1 February 2019 (7 weeks)</td>
</tr>
<tr>
<td></td>
<td>In case of finalist courses: 12 November - 14 December 2018 (5 weeks)</td>
</tr>
<tr>
<td>Thesis (BSc, MSc) submission deadline</td>
<td>According to the decision of the department but max. 14 days of the beginning of the final examination period.</td>
</tr>
<tr>
<td>Event Type</td>
<td>Details</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Final examination period</td>
<td>According to the decision of the department at least one occasion between 17 December 2018 and 1 February 2019. The department shall announce the date of the final examination until 15 September 2018.</td>
</tr>
<tr>
<td>Registration week</td>
<td>4 - 8 February 2019</td>
</tr>
</tbody>
</table>
| 2nd semester study period in MSc and BSc programs | 11 February - 17 May 2019 (14 weeks)
In case of finalist courses: 11 February - 12 April 2019 (9 weeks) |
| Conferences | |
| Conference, entitled “Challenges and Opportunities in the Field of Management” (organised by the Department of Engineering Management and Enterprise) | 21-22 March 2019 |
| Career Days in Civil Engineering (organised by the Department of Civil Engineering) | 21-22 March 2019 |
| International conference, entitled “Electrical Engineering and Mechatronics Conference EEMC’19” (organised by the Department of Mechatronics) | 21-22 March 2019 |
| Career Days in and Exhibition on Building Services Engineering | 9-10 May 2019 |
| Reporting period I (Drawing week I) | 25 - 29 March 2019
(5 working days without scheduled lessons, consultation schedule announced previously) |
| Reporting period II (Drawing week II) | 13 – 17 May 2019
(5 working days without scheduled lessons, consultation schedule announced previously). |
| 2nd semester examination period | 20 May - 5 July 2019 (7 weeks)
In case of finalist courses: 15 April - 17 May 2019 (5 weeks) |
<table>
<thead>
<tr>
<th>Thesis (BSc, MSc) submission deadline</th>
<th>According to the decision of the department but max. 14 days of the beginning of the final examination period.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final examination period</td>
<td>According to the decision of the department at least one occasion between 20 May 2019 and 5 July 2019.</td>
</tr>
<tr>
<td></td>
<td>The department shall announce the date of the final examination until 15 February 2019.</td>
</tr>
</tbody>
</table>
THE MECHATRONICS ENGINEERING UNDERGRADUATE PROGRAM

INFORMATION ABOUT THE PROGRAM

Name of undergraduate program: Mechatronics Engineering Undergraduate Program
Specialization available: Specialization in Mechatronic Systems
Field, branch: Engineering, mechanical, transportation, mechatronic engineering
Level: BSc
Qualification: Mechatronics Engineer
Mode of attendance: Full-time
Faculty: Faculty of Engineering
Program coordinator: Géza Husi PhD habil associate professor
Person in charge of the specialization: Géza Husi PhD habil associate professor
Program length: 7 semesters
Credits total: 210 credits

The objective of the programme is to train mechatronics engineers who has competence to integrate engineering with electronics, electrotechnics and computer control in synergetic way. They are able to complete routine design, operation and maintenance of mechatronics equipment and processes furthermore intelligent machinery, to introduce and apply mechatronics technologies, to organize energy-efficient and environmental process and production management, to complete average tasks on engineering development and design considering the needs of the international labour market. They are prepared to complete their studies in graduate programme.

Professional competences to be acquired

a) knowledge

He/She knows

- the applied materials and their production, characteristics in the field of mechatronics and the conditions of their application.
- the systems, sensors and actuators of mechatronics, electromechanical, information, motion control and their structural units, fundamental operation in engineering, in electrotechnics and in controlling.
- the fundamental design principles, methods in mechatronics including engineering and precision constructions and the fundamentals of designing analogue and digital circuits.
- the fundamental methods of calculation, modelling and simulation of engineering, electrical and control systems.
- the instruments, subassemblies, fundamental design and programming methods of computerized control, measurement data collection, embedded systems, optical detections, image processing.
- the fundamental measurement procedures and their tools, equipment, measurement instruments applied in electronics and engineering.
- the domestic and international standards, regulations.
- the security, health and environment protection (SHE), common standards of quality management and controlling (QA/QC) related to his professional field.
- the fundamentals of the professional field, limits and requirements of logistics, management, environmental protection, quality assurance, occupational health, information technology, law, economics.
- the methods of learning, knowledge acquisition, data collection and their ethic limits, problem solving techniques.
- the basics of corporate finances and the methods and tools of cost-benefit analysis on the bases of engineering.

b) skills

He/She is able to
- apply basic calculations, modelling principles, methods in the field of engineering, electrotechnics and controlling related to designing products and technologies of mechatronics, electromechanics, movement control.
- understand and describe the structure, the operation of units and elements of mechatronic systems, the configuration and connection of system elements in engineering, electrotechnic and control technique.
- apply technical standards related to operating mechatronic systems and intelligent machines, the principles of adjusting and maintenance mechatronic systems in engineering, electrotechnic, controlling approaches and know their economical correspondences.
- control and check technological manufacturing processes bearing in mind the elements of quality control.
- diagnose errors, select the right error treatment in engineering, electrotechnic, control technique approaches.
- to integrate knowledge from the fields of electronic, engineering and informatics and systemic thinking with experts of different fields, to carry out professional negotiation, introduce his/her thoughts in his/her professional filed clearly both in written and oral forms.
- understand and use the proper online and printed literature in English and with this knowledge he/she keeps his/her professional development continuous.
- complete monotonous practical tasks with steadiness and tolerance.
- work in groups and accept his/her status in a group and identify with it.

c) attitude

He/she
- aspires to have an integrating role in connecting engineering, information, electrical engineering and life science.
- aspires to his/her self-learning in the field of mechatronics within that especially in applied engineering, electrical and informatics and other professional fields related to work in order to his/her self-learning will meet continuously with his/her professional goals.
- aspires to complete tasks to make management decisions preferably in cooperation with his/her colleagues opinions.
- is opened and receptive to applying new, modern, innovative procedures, methods especially in the field of organic farming, health consciousness.
- aspires to learn the best practical, new professional knowledge and methods.
- does his/her job under consideration with ethical standards.
- shares his/her experience with his/her colleagues to promote their development.

d) his/her autonomy and responsibility

He/she
- selects and applies the relevant problem solving methods individually.
- shall take responsibility for the statements and professional decisions indicated in designs and other documents, and for manufacturing procedures carried out under his/her control.
- shall become involved in projects of research and development related to his/her profession. In project groups he/she mobilizes his/her theoretical and practical knowledge and skills and cooperate with other group members to gain their aim in the project group.
- manages the work of staffing to which he is assigned, monitors the maintaining machines and instruments according to he instructions of his manager.
- evaluates the work effectiveness, efficiency and safety of his/her staff and as a leader he/she takes care of promoting his/her staff professional development and fosters their efforts. Completion of the academic program
Credit System

Majors in the Hungarian Education System have generally been instituted and ruled by the Act of Parliament under the Higher Education Act. The higher education system meets the qualifications of the Bologna Process that defines the qualifications in terms of learning outcomes, statements of what students know and can do on completing their degrees. In describing the cycles, the framework uses the European Credit Transfer and Accumulation System (ECTS).

ECTS was developed as an instrument of improving academic recognition throughout the European Universities by means of effective and general mechanisms. ECTS serves as a model of academic recognition, as it provides greater transparency of study programmes and student achievement. ECTS in no way regulates the content, structure and/or equivalence of study programmes.

Regarding each major the Higher Education Act prescribes which professional fields define a certain training program. It contains the proportion of the subject groups: natural sciences, economics and humanities, subject-related subjects and differentiated field-specific subjects.

The following professional fields define the Mechatronics Engineering BSc training:

- Natural Sciences: 40-50 credits;
- Economics and Humanities: 14-30 credits;
- Field-specific professional skills for mechatronics engineers: 70-105 credits.

The specialization provided by the training institute comprises at least 40 credits in the complete bachelor program.

Minimum of credit points assigned to optional subjects: 10

Credit points assigned to thesis: 15

Credits total: 210

Guideline (List of Subjects/Semesters)

The total number of credit points (210) of the training program can be obtained by completing the subjects of the curriculum. There is a certain degree of freedom in the order students can complete the subjects. However, it is recommended that the suggested order be followed because some subjects can only be taken after the completion of the prerequisite subject(s), and/or can be the prerequisites for other subjects.

The list of subjects you have to complete in the semesters according to the model curriculum of Mechatronics Engineering BSc programme:
<table>
<thead>
<tr>
<th>1st semester</th>
<th>2nd semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics I</td>
<td>Mathematics II</td>
</tr>
<tr>
<td>Engineering Physics</td>
<td>Mathematics Comprehensive Exam</td>
</tr>
<tr>
<td>Informatics (Programming in C)</td>
<td>Computer-Aided Modelling</td>
</tr>
<tr>
<td>Electromagnetism</td>
<td>Materials Engineering</td>
</tr>
<tr>
<td>Law and Ethics</td>
<td>Economics for Engineering</td>
</tr>
<tr>
<td>Basics of Mechatronics</td>
<td>Informatics (Labview)</td>
</tr>
<tr>
<td></td>
<td>Electrotechnics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd semester</th>
<th>4th semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics III</td>
<td>Dynamics and Vibration</td>
</tr>
<tr>
<td>Statics and Strength of Materials</td>
<td>Mechatronic Devices (Sensors, Actuators, Motors)</td>
</tr>
<tr>
<td>Microeconomics and economical processes of enterprises</td>
<td>Measurement and data acquisition</td>
</tr>
<tr>
<td>Electronics I</td>
<td>Environment, Health and Safety, Ergonomics (Basics of EHS)</td>
</tr>
<tr>
<td>Mechanical Machines and Machine Elements</td>
<td>Applied Automatization I</td>
</tr>
<tr>
<td>Manufacturing Technologies</td>
<td>Pneumatics and Hydraulics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5th semester</th>
<th>6th semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality and Technical Management</td>
<td>Electrical machines and drives</td>
</tr>
<tr>
<td>Applied Automatization II</td>
<td>Thermodynamic Processes</td>
</tr>
<tr>
<td>Electropneumatics and Electrohydraulics</td>
<td>Mechatronics Comprehensive Exam</td>
</tr>
<tr>
<td>Modelling and Simulation Prototype Technologies I</td>
<td>Modelling and Simulation Prototype Technologies II</td>
</tr>
<tr>
<td>Robots and Robotics Technology</td>
<td>Caxx Techniques</td>
</tr>
<tr>
<td></td>
<td>Cyber-Physical Systems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7th semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project of Mechatronics</td>
</tr>
<tr>
<td>BSc Thesis</td>
</tr>
</tbody>
</table>
About the prerequisites of each subject please read the chapter “Course Descriptions for Mechatronics Engineering BSc”!

Work and Fire Safety Course

According to the Rules and Regulations of University of Debrecen a student has to complete the online course for work and fire safety. Registration for the course and completion are necessary for graduation. For MSc students the course is only necessary only if BSc diploma has been awarded outside of the University of Debrecen.

Registration in the Neptun system by the subject: MUNKAVEDELEM

Students have to read an online material until the end to get the signature on Neptun for the completion of the course. The link of the online course is available on webpage of the Faculty.

Internship

Students majoring in the Mechatronics Engineering BSc have to carry out a 6 weeks internship involved in the model curriculum. The internship course must be signed up for previously via the NEPTUN study registration system in the spring semester (4th semester). Its execution is the criteria requirement of getting the pre-degree certificate (absolutorium).

Physical Education

According to the Rules and Regulations of University of Debrecen a student has to complete Physical Education courses at least in two semesters during his/her Bachelor training. Our University offers a wide range of facilities to complete them. Further information is available from the Sport Centre of the University, its website: http://sportsci.unideb.hu.

Optional Courses

According to the Rules and Regulations of University of Debrecen a student has to complete elective courses during his/her BSc training. These elective courses are opened by the Departments at the Faculty of Engineering at the beginning of the actual semester.
You can find the list of the actual semester under “Current Students” > “Useful Information about your Study” > “Optional subjects”.

A student can also select optional courses from other faculties of University of Debrecen to complete.

In the Mechatronics Engineering BSc programme you have to gain at least 10 credits with completing elective subjects.

Pre-degree Certification

A pre-degree certificate is issued by the Faculty after completion of the bachelor (BSc) program. The pre-degree certificate can be issued if the student has successfully completed the study and exam requirements as set out in the curriculum, the requirements relating to Physical Education, internship (mandatory) – with the exception of preparing thesis – and gained the necessary credit points (120). The pre-degree certificate verifies (without any mention of assessment or grades) that the student has fulfilled all the necessary study and exam requirements defined in the curriculum and the requirements for Physical Education. Students who obtained the pre-degree certificate can submit the thesis and take the final exam.

Thesis

A Thesis is the creative elaboration of a professional task (scientific, engineering, design, development, research or research development) in written form. By solving the task the student relies on his/her studies using national and international literature under the guidance of an internal and external supervisor (referee). By solving the task the mechatronics engineering student certifies that he/she is capable to apply the acquired knowledge in practice and to summarize the completed work and its results in professional way, to solve the tasks related to his/her topic creatively and to complete individual professional work. By preparing and defending thesis students who complete the Mechanical Engineering undergraduate program prove that they are capable of the practical applications of the acquired skills, summarizing the work done and its results in a professional way, creatively solving the tasks related to the topic and doing individual professional work. The faculty academic calendar (issued by the Vice-Rector for Education) sets the thesis submission deadline.

A student in bachelor program has to make a thesis as a prerequisite of the state exam. The requirements of the thesis content, the general aspects of evaluation and the number of credits assigned to the thesis are determined by the requirements of the program. In mechatronics engineering program the credits assigned to the thesis is 15.
The latest that thesis topics are announced by the departments for the students is the end of Week 4 of the study period of the last semester. A thesis topic can be suggested by the student as well and the head of department assigned shall decides on its acceptance. The conditions on the acceptance of thesis as National Conference of Scientific Students’ Association (hereinafter NCSSA) topic are specified by the Faculty. The NCSSA work is supposed to meet the requirements in form and content for thesis. Furthermore, it is necessary that the committee of the Pre-NCSSA makes suggestions on the NCSSA work to become a thesis.

Making a thesis is controlled by a supervisor had approved by the department who is promoted by a referee also previously had approved by the department. Formal requirements of a thesis are announced in writing by the Department of Electrical Engineering and Mechatronics that are announced with the tasks in written form at the same time.

The faculty academic calendar (issued by the Vice-Rector for Education) sets the thesis submission deadline, for want of this the deadline is the 21. day 12 noon before the first day of the final exam.

Thesis is evaluated by the referee (internal or external), and it is evaluated and qualified individually by the department. The Head of the Department of Electrical Engineering and Mechatronics makes suggestion on its qualification to the Final Exam Board.

If thesis is evaluated with a fail mark by the referee, and the department the student is not allowed to take the final exam and is supposed to prepare a new or modified thesis. The student has to be informed about it. Conditions on resubmitting the thesis are defined by the program coordinator.

State Exam (Final Exam)

Students having obtained the pre-degree certificate will finish their studies by taking the final exam. Final exam can be taken in active student status in the forthcoming exam period after gaining the pre-degree certificate then after termination of student status in any exam period within two years according to the valid education requirements. After the fifth year of the termination of student status the candidate is not allowed to take the final exam. Only students who do not have outstanding charges are allowed to take the final exam. Students who obtained a pre-degree certificate until 1 September 2016 can take the final exam until 1 September 2018.

A student having obtained the pre-degree certificate (absolutorium) will finish his/her studies in Mechatronics Engineering BSc training by taking the state exam. A state exam is the evaluation and control of the knowledge and skills acquired in tertiary education during which the candidate has to certify that he/she is able to apply the obtained knowledge in practice.

A state exam can be taken in the forthcoming exam period after obtaining the pre-degree certificate. The Department announces two state exam dates in a year, one at the
beginning of January and one at the end of June. A state exam have to be taken in front of the Committee on the fixed date. If a candidate does not pass his/her state exam by the termination of his/her student status, he/she can take his/her state exam after the termination of the student status on any of the state exam days of the relevant academic year according to existing requirements on the rules of the state exam.

The State Exam consists of two parts according to the curriculum.

1) Written and oral exam on the topics of Building Automation.
2) Thesis Defence (a presentation of the thesis, answering questions, comments then answering questions based on the knowledge related to the thesis topic)

A state exam can be started if the candidate can be submitted to the state exam on the basis of definite opinion of the referees. The two parts must be hold on the same day.

The parts of the state exam are evaluated on a five-point scale by members with voting rights in the Final Exam Board. The final grade for the state exam will be decided on by voting in a closed sitting after the state exam, then . In case of equal votes the committee chair will take the decision. State exam results will be announced by the committee chair. Results of the state exam and thesis defence will be announced at the end of the given exam day (when all candidates finished state exam and thesis defence on the given day). A note of the state exam will be taken.

Improving failed state exam

If a thesis is evaluated with a fail mark by the Final Exam Board a final exam has to be retaken with a new or modified thesis.

If any of part if the final exam is a fail it must be retaken according to the existing rules of the university. Final exam can be retaken twice. The ensuing final exam period is the soonest that the re-sit is allowed.

Final exam board

Committee chair and members of the committee are called upon and mandated by the dean with the consent of the Faculty Council. They are selected from the acknowledged internal and external experts of the professional field. Traditionally, it is the chair [and][21] in case of his/her absence or indisposition the vice-chair who will be called upon, as well. The committee consists of – besides the chair – at least one member (a professor, an associate professor or college professor) and at least two questioners (instructors) and the examiner. In controversial cases the chair makes the decision. The mandate of a Final Examination Board lasts for three years. The devision of the candidates to the mandatory final exam board is announced by the Registry Office.
COURSE DESCRIPTIONS FOR MECHATRONICAL ENGINEERING BSC

The order of subject follows the subject list in the model curriculum.

Subject group “Basic Natural Sciences”

Mathematics I

Code: MK3MAT1A8RX17-EN
ECTS Credit Points: 8
Evaluation: mid-semester grade
Year, Semester: 1st year, 1st semester
Its prerequisite(s): -
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 4+4

Topics:
The basic notions of linear algebra, differentiation and integration for real functions; some applications in physics.

Literature:
Compulsory:

Schedule
1st week Registration week
2nd week:
Lecture: Real numbers
Axiom system. Boundary, inf, sup, min, max. Dedekind-complete, real line. Distance, neighbourhood, interior point, accumulation point. Intervals. The sets \(\mathbb{R} \), \(\mathbb{R}^2 \), \(\mathbb{R}^3 \) and their geometric interpretations. Natural numbers, integer numbers, rational numbers. Coordinate systems Polar

3rd week:
Practice: Vector geometry, vector algebra. The algebra of vectors in 2 and 3 dimensions: operations, coordinate systems. The algebraic definition of the
coordinate system. Spherical- and Cylindrical coordinate systems.

Practice: Operations of sets, Boole algebra. Logic values, logic operations, logic functions. Cartesian product, 2-tuple, n-tuple. Cardinality. Illustrations of sets on the plane and in the space.

4th week:
Lecture: *Series of real and complex numbers* partial sums and convergence. Absolute convergence. Geometric series, criteria of convergence. (Comparison test, ratio test, root test).

Practice: Applications: Mechanical work, moment of a force with respect to a point, moment of a force with respect to an axis.

6th week:
Lecture: *Approximations of real functions.* Lagrange interpolation. Linear regression.

Practice: *The set of thee complex numbers.* Complex plane, rectangular form, trigonometric form, exponential form, operations.

Application: complex impedance

8th week: 1st drawing week Test 1

9th week:
Lecture: *Matrices.* The arithmetic of matrices, determinants and their properties: operations, the notions of symmetrical matrix, skew-symmetrical matrix, determinant, the inverse matrix.

Practice: *Matrices.* Operations, determinants and inverses with adjoint matrices

10th week:
Lecture: *Vector spaces.* The notion of linear (or vector) space, linear combinations of vectors, linearly dependent and independent systems, basis, dimension, coordinates. Ranks of vector systems, ranks of matrices

Practice: *Vector spaces.* Linearly independent and dependent systems, bases. Ranks of vector systems, ranks of matrices
11th week:
Lecture: Systems of linear equations: Gauss elimination (addition method) and Cramer’s rule. Applications: Calculations for direct current using Kirchhoff’s current and voltage laws.
Practice: Systems of linear equations: Gauss elimination (addition method) and Cramer’s rule.

12th week:
Lecture: Systems of linear equations: by the inverse of the coefficient matrix
Practice: Systems of linear equations: by the inverse of the coefficient matrix

13th week:
Lecture: Linear functions. The notion of the linear function, the matrices of linear functions. Eigenvalues, eigenvectors.

14th week:
Lecture: Linear functions. Bases transformations
Practice: Linear functions. Bases transformations

15th week: 2nd drawing week Test

Requirements
A, for a signature:
Participation at practice, according to Rules and Regulations of University of Debrecen. The correct solution of homework and submission before deadline. Solving assorted tasks.

B, for a grade:
All the tests must be written during the semester. Evaluation is according to the Rules and Regulations of University of Debrecen.

Mathematics II

Code: MK3MAT2A6RX17-EN
ECTS Credit Points: 6
Evaluation: mid-semester grade
Year, Semester: 1st year, 1st semester
Its prerequisite(s): Mathematics I
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+4
Topics:
Differentiation and integration of multivariable and vector-valued functions, differential equations.

Literature:
Compulsory:

Schedule

<table>
<thead>
<tr>
<th>1st week Registration week</th>
<th>2nd week</th>
<th>3rd week</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Lecture: Metric, topology, sequences in \mathbb{R}^n. Linear functions.</td>
<td>Lecture: Parametric curves I. Notions of differentiation, linear approximation. Frenet-Serret frame. Some examples in physics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4th week:</th>
<th>5th week:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture: Parametric curves II. Curvature, torsion. Evolute, evolvent, conic sections.</td>
<td>Lecture: Differentiable functions of type $\mathbb{R}^n \rightarrow \mathbb{R}^m$.</td>
</tr>
<tr>
<td>Practice: Curvature, torsion. Determinations of conic sections in parametric form. Differential equations which can be integrated on direct way. Separable differential equations.</td>
<td>Practice: Derivatives of functions of type $\mathbb{R}^n \rightarrow \mathbb{R}^m$. First order linear differential equations (homogeneous and inhomogeneous, method of variation).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6th week:</th>
<th>7th week:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practice: Surfaces of revolution: ellipsoid and paraboloid in parametric form.</td>
<td>Practice: The domains of functions of type $\mathbb{R}^2 \rightarrow \mathbb{R}$. Directional derivative and</td>
</tr>
</tbody>
</table>
Derivatives of functions of type $\mathbb{R}^2 \to \mathbb{R}^3$. The equation of the tangent plane. Determination of solutions of inhomogeneous first order linear differential equations.

8th week: 1st drawing week Test 1,2

9th week:
- **Lecture:** Local and global extrema.
- **Practice:** Local extrema of functions of type. $\mathbb{R}^2 \to \mathbb{R}, \mathbb{R}^3 \to \mathbb{R}$

10th week:
- **Practice:** Determination of global extrema on boundary closed sets. Solution of linear homogeneous differential equations of order two having constant coefficients.

11th week:
- **Lecture:** The notion of double and triple integrals on 2 and 3 dimensional intervals. The extensions of the integrals.

12th week:
- **Lecture:** Integrals over general regions.
 Applications: second moment of area, mass, center of gravity
- **Practice:** Double and triple integrals on 2 and 3 dimensional intervals. Special second order differential equations.

13th week:
- **Lecture:** The arc length of curves, surface area. Line and surface integrals. The theorems of Gauss and Stokes, Green’s formulae. Applications in physics.
- **Practice:** Integrals over general regions. Applications: second moment of area, mass, center of gravity. The theorems of Gauss and Stokes, Green’s formulae. Applications in physics. The Laplace transform and its applications.

14th week:
- **Lecture:** Mathematical softwares
- **Practice:** The arc length of curves, surface area. Line and surface integrals. Slope fields, numerical methods. (Euler, Runge-Kutta).

15th week: 2nd drawing week Test 3, 4

Requirements

A, for a signature:
- Participation at practice, according to Rules and Regulations of University of Debrecen.
- The correct solution of homework and submission before deadline. Solving assorted tasks.

B, for a grade:
- All the tests must be written during the semester. Evaluation is according to the Rules and Regulations of University of Debrecen.
Mathematics Comprehensive Exam

Code: MK3MATSA00RX17-EN
ECTS Credit Points: 0
Evaluation: exam
Year, Semester: 1st year, 2nd semester
Its prerequisite(s): Mathematics II at the same time or later
Further courses are built on it: Yes/No

Subjects of the comprehensive exam: Mathematics I and II

Mathematics III

Code: MK3MAT3A04RX17-EN
ECTS Credit Points: 4
Evaluation: mid-semester grade
Year, Semester: 2nd year, 1st semester
Its prerequisite(s): Mathematics II
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+2

Topics:

Literature:
Compulsory:
- Soong, T. T., Fundamentals of probability and statistics for engineers, John Wiley & Sons, Inc., 2004
- DeCoursey, W. J., Statistics and Probability for Engineering Applications With Microsoft® Excel, Newnes, 2003
Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st week</td>
<td>Registration week</td>
<td></td>
</tr>
<tr>
<td>2nd week</td>
<td>Lecture: Sample spaces and events. Axioms of probability.</td>
<td>Practice: Calculation of probability.</td>
</tr>
<tr>
<td>4th week</td>
<td>Lecture: Discrete and continuous random variables, probability distribution, density function.</td>
<td></td>
</tr>
<tr>
<td>5th week</td>
<td>Lecture: Binomial, Poisson, uniform, exponential, Weibull and normal distribution, applications.</td>
<td>Practice: Random variables.</td>
</tr>
<tr>
<td>6th week</td>
<td>Lecture: Numerical characteristics of random variables.</td>
<td>Practice: Numerical characteristics of random variables.</td>
</tr>
<tr>
<td>7th week</td>
<td>Lecture: Sampling, descriptive statistics. SPC.</td>
<td>Practice: Descriptive statistics.</td>
</tr>
<tr>
<td>8th week</td>
<td>Lecture: Point and interval estimation.</td>
<td>Practice: Point and interval estimation.</td>
</tr>
<tr>
<td>10th week</td>
<td>Lecture: Modelling with differential equations. Linear systems.</td>
<td>Practice: Modelling with differential equations.</td>
</tr>
<tr>
<td>12th week</td>
<td>Lecture: Laplace transform and applications.</td>
<td>Practice: Laplace transform and applications.</td>
</tr>
<tr>
<td>15th week</td>
<td>2nd drawing week</td>
<td>Test 2</td>
</tr>
</tbody>
</table>
Requirements

A, for a signature:
Participation at practice, according to Rules and Regulations of University of Debrecen. The correct solution of homework and submission before deadline. Solving assorted tasks.

B, for a grade:
All the tests must be written during the semester. Evaluation is according to the Rules and Regulations of University of Debrecen.

Engineering Physics

Code: MK3MFIZA04RX17-EN
ECTS Credit Points: 4
Evaluation: exam
Year, Semester: 1st year, 1st semester
Its prerequisite(s): -
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+2

Topics:
Geometrical optics, kinematics and dynamics of particles, concept of mechanical work, kinetic and potential energy, electrostatics, electric fields around conductors, transport processes, steady-state transport of electric charge, steady-state heat transfer (conduction, convection and radiation)

Literature:
Compulsory:
- Jerry S. Faughn, Raymond A. Serway, Chris Vuille, Charles A. Bennett: Serway’s College Physics, Published 2005 by Brooks Cole Print, ISBN 0-534-99723-6

Schedule

1st week Registration week

2nd week:
Lecture: Geometrical (ray) optics.
Concept of geometrical optics, law of reflection and refraction (Snell’s law),

3rd week:
Lecture: Kinematics of a particle I.
Brewster’s angle, Optics of prisms and lenses, imaging properties and magnification, aberrations, compound lenses.

Practice: Solving problems for the reflection and refraction of light beams and for the imaging of lenses and compound lenses.

4th week:
Lecture: Kinematics of a particle II. Description of the motion by scalar quantities: Scalar position, velocity and acceleration.
Example: uniform and uniformly varying motion
Practice: Solving problems for uniform and uniformly varying motions.

5th week:
Practice: Application of Newton’s laws in kinetic problems.

6th week:
Lecture: Kinetics of a particles II. Concept of work and kinetic energy, work-energy theorem. Application of work-energy theorem in dynamic problems.
Practice: Application of Newton’s laws and the work energy theorem in kinetic problems.

8th week: 1st drawing week Test 1

9th week:
Lecture: Electrostatics II. Electric voltage and potential, capacitance, capacitance of planar, cylindrical and spherical capacitors, the energy of capacitors, capacitor circuits.
Practice: Calculating the capacitance and stored energy of different types of capacitors and capacitor connections.

10th week:
Lecture: Transport processes
Concept of physical system, current intensity and source strength, extensive and intensive physical properties, conduction and convection current. Equation of balance and steady-state conduction. Thermal conductivity and conductive resistance. Conductive resistance circuits.
Practice: Application of the equation of balance and steady-state conduction in different physical problems.
11th week:

Lecture: Steady state transport of electric charge (Direct electric current). Electric current intensity, electrical conductivity and resistance, Ohm’s law, electric work and power, characteristics of DC sources, Kirchhoff’s circuit laws, solution of DC circuits

Practice: Solution of DC circuits

12th week:

Lecture: Steady-state heat transfer I - Thermal conduction. Concept of heat current and thermal conduction, equation of steady-state thermal conduction, thermal conductivity and resistance, steady state temperature distribution in a one dimensional wall of thermal conductivity

Practice: Solving thermal conduction problems

13th week:

Lecture: Steady-state heat transfer II - Thermal convection. Concept of thermal convection and heat transfer, equation of steady-state heat transfer, heat transfer coefficient and resistance, overall heat transfer coefficient and resistance

Practice: Calculating the steady state temperature distribution in a one dimensional wall of thermal conductivity

14th week:

Lecture: Steady-state heat transfer III - Thermal radiation. Thermal radiation characteristics, concept of black body radiation, fundamental laws of thermal radiation (Planck distribution, Wien displacement law, Stefan-Boltzmann and Kirchhoff’s law), gray body radiation

Practice: Solving thermal radiation problems

15th week: 2nd drawing week Test 2

Requirements

A, for a signature:

Participation at lectures is compulsory. Students must attend lectures and may not miss more than three of them during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at lectures will be recorded by the lecturer. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed lectures must be made up for at a later date, being discussed with the tutor.

Students have to write two midterm tests during the semester. The first (40 points max) in the 8th, the second (40 points max) in the 14th week. At the end of the semester everybody will get a seminar grade as follows (score/grade): 0-39 = fail; 40-50 = pass (2); 51-60 = satisfactory (3); 61-70 = good (4); 71-80 = excellent (5).

If somebody fails then he has to write both tests in the 1st week of the exam period again. If the result is 40 points (50%) or better, then he can take an exam. If somebody has to repeat his midterm tests then his seminar grade can’t be better than (2).

There will be homework from week to week. Only students who have handed in all their homework at the time of the midterm test will be allowed to write it. The problems in the midterm tests will be selected from the homework assignments.
B, for a grade:
Everybody will get an exam grade for their exam. The final grade will be the average of the seminar and exam grade. If it is for example (3.5) then the lecturer decides if it is (3) or (4).

Computer Aided Modelling

Code: MK3SZABA04RX17-EN
ECTS Credit Points: 4
Evaluation: mid-semester grade
Year, Semester: 1st year, 2nd semester
Its prerequisite(s): -
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 0+4

Topics:
Computer-aided geometric design deals with the description of shape for use in computer graphics. The aim of this course is to develop the spatial ability - which is essential in engineering applications -, the 3D representation and the techniques of graphic communication with use of computer-aided de-sign (CAD) software. Basics of plane geometry. Computer-aided geometric constructions. Representation of solids, sizing, plane transformation, intersections. Plane curves, splines. Basics of spatial geometry. 3D loci. 3D constructions. Intersection of the polyhedrons with lines and planes. Intersection of two polyhedrons. Space curves, curved surfaces, ruled surfaces, surface of revolution. Representation of curved surfaces, Intersection of curved surfaces with planes. Intersection of two curved surfaces. Solid modelling, 3D construction, construction and representation of geometric elements with given conditions.

Literature:
Compulsory:

Schedule
1st week Registration week
2nd week:
Practice: Representation of the space-elements (points, lines, segments, planes). Line in a plane, point in a plane. Basics of spatial geometry.

4th week:
Practice: Intersection of two polyhedrons. Intersection of prisms and pyramids.

6th week:
Practice: Computer-aided geometric constructions. Representation of solids, sizing, plane transformation, intersections.

8th week: 1st drawing week

9th week:
Practice: Spatial geometry, 3D loci.

11th week:
Practice: Space curves, curved surfaces, ruled surfaces, surface of revolution.

13th week:
Practice: Solid modelling I.
3D construction, construction and representation of geometric elements with given conditions.

15th week: 2nd drawing week

3rd week:
Practice: Intersection of the polyhedrons with lines and planes. Prisms and pyramids.

5th week:
Practice: Curved surfaces (Cylinders, Cones, Spheres). Intersection of the Curved surfaces with planes. Development of a curved surfaces and intersections.

7th week:
Practice: Plane curves, splines.

10th week:
Practice: 3D constructions. Intersection of the polyhedrons with lines and planes. Intersection of two polyhedrons.

12th week:
Practice: Representation of curved surfaces. Intersection of curved surfaces with planes. Intersection of two curved surfaces.

14th week:
Practice: Solid modelling II.
3D construction, construction and representation of geometric elements with given conditions.

Requirements
A, for a signature:
Regular attendance (Minimum 70 %). Successful accomplishment of homeworks.

B, for grade:
Grades will be a composite of mid-term test and end-term test. Minimum requirements to pass the semester: Successful accomplishment of the tests (Minimum 50%).
Informatics (Programming in C)

Code: MK3INFCA4RX17-EN
ECTS Credit Points: 4
Evaluation: mid-semester grade
Year, Semester: 1st year, 1st semester
Its prerequisite(s): -
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 0+4

Topics:

Literature:
Compulsory: -

Schedule

1st week Registration week

2nd week:
Practice: Basic knowledge. Phases of programming, problem orientation, specification, algorithm design, control modes, structural chart, flowchart, source code, object Code, development environment, compiler

3rd week:
Practice: Types, Operators and Expressions. Number representation, data types, abstract data type, elemental data types, complex data types, string type, type creation, dynamic variables, memory model, modules, define and declare variables in C.

4th week:
Practice: Pointers and Arrays. Arrays, vectors and matrices, array management, matrix operations

5th week:
Practice: Dynamic variables. Memory management, pointer type, pointer arithmetic
6th week:
\textbf{Practice:} Control structures. Logical conditions, Boolean algebra, selection controls: simple selection, multiple selection, case selection, implementation in C.

7th week:
\textbf{Practice:} Control structures. Repeat controls: initial condition, termination, counting, loop, discrete loop, implementation in C.

8th week: 1st drawing week, Test 1

9th week:
\textbf{Practice:} Functions and program structure. Sequential control and implementation in C language.

10th week:
\textbf{Practice:} Functions and program structure. Process control, void and function operation, simple recursion and implementation in C language.

11th week:
\textbf{Practice:} Structures. Implementing structures, complex programming tasks.

12th week:
\textbf{Practice:} Structures. Implementing structures, complex programming tasks.

13th week:
\textbf{Practice:} Input/Output Operation. Basics of I/O operations, access to data files, low level and formatted I/O operations.

14th week:
\textbf{Practice:} Summary. Consultation, homework submission, sample test.

15th week: 2nd drawing week, Test 2

Requirements
Participation at practice, according to Rules and Regulations of University of Debrecen. The correct solution of homework and submission before deadline. Solving assorted tasks.

Electromagnetism

Code: MK3EMAGA04RX17-EN
ECTS Credit Points: 4
Evaluation: exam
Year, Semester: 1st year, 1st semester
Its prerequisite(s): -
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+2
Topics:
Electrostatics, electrical potential, electric fields around conductors, electric current, the fields of moving charges, the magnetic field, electric and magnetic fields in matter, electromagnetic induction and Maxwell’s equations, alternating-current circuits, electromagnetic waves.

Literature:
Compulsory:

Schedule

<table>
<thead>
<tr>
<th>1st week Registration week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd week:</td>
</tr>
<tr>
<td>Lecture: Coulomb’s law. Electric field strength and its flux. Gauss’s law for electricity (Maxwell’s first equation)</td>
</tr>
<tr>
<td>Practice: Calculation of the strength of static electric fields generated by simple charge arrangements.</td>
</tr>
</tbody>
</table>

| 3rd week: |
| **Lecture**: Potential energy in static electric field and its calculation in simple cases. Electric potential and voltage. Capacitance. Capacitance of a planar, spherical and cylindrical capacitor. |
| **Practice**: Calculation of potential energy and voltage in static electric fields. |

| 4th week: |
| **Practice**: Calculation of the capacitance and energy of different types of capacitors and capacitor connections |

| 5th week: |
| **Practice**: Solution of DC circuits |

| 6th week: |
| **Lecture**: The magnetic field: Lorentz force, magnetic induction and its flux. Gauss’s law for magnetism. (Maxwell’s second equation) Ampere’s circuital and Biot-Savart law and their application for the calculation of magnetic induction in simple cases. |

| 7th week: Waste Management |
| **Lecture**: Force acting on a current carrying conductor in a magnetic field. Method for the measurement of current and voltage on the bases of the above force with Deprez device. The magnetic analogy to Ohm’s law. Magnetic circuits. |
Practice: Calculation of the force acting on a moving charged particle in a magnetic field. Calculation of magnetic induction in a magnetic field generated by current carrying wires.

8th week: 1st drawing week, Test 1

9th week:
Practice: Calculation of the voltage induced in a loop and in different types of coils. Calculation of the self and mutual inductance of coils.

10th week: Occupational Safety
Lecture: Working principle of AC generator and transformer. Summary of Maxwell’s equations.
Practice: Solving problems in connection with AC generators and transformers.

11th week: Labor and Health
Lecture: Concept and characteristics of alternating current and voltage, inductive and capacitive reactance. Power in AC circuits.
Practice: Calculations in AC circuits.

12th week:
Lecture: Analyzing AC circuits with complex numbers.
Practice: Analyzing AC circuits with complex numbers.

13th week:
Lecture: Characteristics of electromagnetic waves (wave number and length, intrinsic impedance, polarization, propagation constant). Reflection and transmission of plane electromagnetic waves at plane boundaries.
Practice: Calculation of the characteristics of electromagnetic waves. Solving problems of reflection and transmission of plane electromagnetic waves at plane boundaries.

14th week:
Lecture: Propagation of electromagnetic field along transmission lines
Practice: Solving electromagnetic wave propagation problems.

15th week: 2nd drawing week, Test 2

Requirements

A, for a signature:

Participation at lectures is compulsory. Students must attend lectures and may not miss more than three of them during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at lectures will be recorded by the lecturer. Being late is equivalent with an absence. In case of further
absences, a medical certification needs to be presented. Missed lectures must be made up for at a later date, being discussed with the tutor.

Students have to write two midterm tests during the semester. The first (40 points max) in the 8th, the second (40 points max) in the 14th week. At the end of the semester everybody will get a seminar grade as follows (score/grade): 0-39 = fail; 40-50 = pass (2); 51-60 = satisfactory (3); 61-70 = good (4); 71-80 = excellent (5).

If somebody fails then he has to write both tests in the 1st week of the exam period again. If the result is 40 points (50%) or better, then he can take an exam. If somebody has to repeat his midterm tests then his seminar grade can’t be better than (2).

There will be homework from week to week. Only students who have handed in all their homework at the time of the midterm test will be allowed to write it. The problems in the midterm tests will be selected from the homework assignments.

B, for a grade:

For their exam everybody will get an exam grade. The final grade will be the average of the seminar and exam grade. If it is for example (3.5) then the lecturer decides if it is (3) or (4).

Statics and Strength of Materials

Code: MK3STSZG04XX17-EN
ECTS Credit Points: 4
Evaluation: mid-semester grade
Year, Semester: 2nd year, 1st semester
Its prerequisite(s): Engineering Physics
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+2

Topics:

Literature:

Compulsory:

Recommended:

Schedule

<table>
<thead>
<tr>
<th>1st week</th>
<th>Registration week</th>
</tr>
</thead>
</table>

| 2nd week: |
| Lecture: Mathematical preliminaries (vector-, matrixalgebra). Introduction to engineering mechanics. Statics of a particle |
| Practice: Calculation the resultant of 2 and 3 dimensional force systems acting on particles. |

| 4th week: |
| Lecture: Statics of planar structures. Supports and reaction forces. |
| Practice: Practical examples for the determination of the reaction forces of statically determined structures. |

| 6th week: |
| Lecture: Determination of stress resultant diagrams of beams. |
| Practice: Practical examples for the determination of the normal force, shear force and bending moment diagrams of beams. |

| 3rd week: |
| Practice: Calculation of moments. Examples for equilibrium state of rigid bodies and for planar force systems. |

| 5th week: |
| Lecture: Internal force systems of rigid bodies. Loading of beams. |
| Practice: Practical examples for the determination of the normal force, shear force and bending moment functions of beams. |

| 7th week: |
| Lecture: Statically determined beam structures. |
| Practice: Analysis of hinged-bar systems and truss systems. 1st test. |
8th week: 1st drawing week

9th week:
- **Practice:** Practical examples for strain and stress calculations.

10th week:
- **Lecture:** Simple loadings I: tension, compression and bending of prismatic beams. Fundamentals of sizing and control.
- **Practice:** Practical examples for tension, compression and bending.

11th week:
- **Lecture:** Simple loadings II: torsion of prismatic beams with circular and ring cross sections. Mohr’s circle. Shear.
- **Practice:** Practical examples for torsion and shear.

12th week:
- **Lecture:** Combined loadings I: tension and bending, inclined bending, excentrical tension.
- **Practice:** Practical examples for combined loadings.

13th week:
- **Lecture:** Combined loadings II: tension and torsion, bending and torsion. Sizing methods.
- **Practice:** Practical examples for combined loadings.

14th week:
- **Lecture:** The finite element method.
- **Practice:** Case studies for numerical calculation of engineering structures. 2nd test.

15th week: 2nd drawing week

Requirements

A, for a signature:

Attendance at **lectures** is recommended, but not compulsory.

Participation at **practice** is compulsory. Students must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students can’t make up a practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is counted as an absence. In case of further absences, a medical certificate needs to be presented. Missed practices should be made up for at a later date, being discussed with the tutor. Students are required to bring the drawing tasks and drawing instruments to the course with them to each practice class. Active participation is evaluated by the teacher in every class. If a student’s behaviour or conduct doesn’t meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.

During the semester there are two tests: the 1st test in the 7th week and the 2nd test in the 14th week. Students have to sit for the tests.

B, for a grade:

The course ends in a **mid-semester grade** based on the test results.
The minimum requirement for both mid-term and end-term tests is 50%. Based on the score of the tests separately, the grade for the tests is given as follows: (score/grade): 0-39 = fail; 40-52 = pass (2); 52-63 = satisfactory (3); 64-71 = good (4); 72-80 = excellent (5). If the score of the sum of the two tests is below 40, the student once can take a retake test of the whole semester material.

Dynamics and Vibrations

Code: MK3MREZG04XX17-EN
ECTS Credit Points: 4
Evaluation: mid-semester grade
Year, Semester: 2\(^{nd}\) year, 2\(^{nd}\) semester
Its prerequisite(s): Engineering Physics
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+2

Topics:

Motion of a particle:
position, velocity and acceleration and the mathematical relations between them, description of the motion of the particle in Cartesian coordinate system and Frenet-frame, Newton’s laws and differential equation of the motion of the particle, theorems of kinetics, force fields, kinetic, potential and mechanical energy, constrained motion along a two or three dimensional curve
Motion of a rigid body:
description of the translational, rotational and general plane motion of a rigid body, concept and determination of the instantaneous centre of zero velocity and acceleration, rolling motion without slipping, description of the plane motion of a rigid body in a time interval, centre of mass, momentum and angular momentum, moment of inertia and its calculation, mechanical work, Newton’s laws and theorem of kinetics for rigid bodies, rotating and swinging of the body about an axis, rolling without slipping
Vibrations:
Description and classification of vibratory motions and vibrating systems. Basic definitions and properties of vibratory motion. Investigation of the elements of vibrating systems: masses and inertial elements, flexible and damping elements. Investigation of the dynamic models. Two ways for the generation of motion equations: the D’Alembert’s principle and the Lagrange equations of motion. Investigation and properties of the free vibrations of single DOF undamped and damped systems. Solution of the homogenous motion equation. Investigation and properties of the forced vibrations of single DOF undamped and damped systems. Basic types of forced vibrating systems. Multiple DOF systems:
introduction, basic properties, natural frequencies and modes, modal transform and decoupling.

Literature:

Compulsory:

Recommended:

Schedule

<table>
<thead>
<tr>
<th>1st week Registration week</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>2nd week:</th>
<th>3rd week:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture: Kinematics of a particle</td>
<td>Lecture: Kinetics of a particle I</td>
</tr>
<tr>
<td>Practice: Particle kinematics problems</td>
<td>Practice: Particle kinetics problems</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4th week:</th>
<th>5th week:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture: Kinetics of a particle II</td>
<td>Lecture: Kinematics of a rigid body I</td>
</tr>
<tr>
<td>Formulas for work and potential energy in homogeneous and central force fields. Motion of the particle in gravitational and elastic spring force fields. Constrained</td>
<td>Basic concepts (rigid body and disc, planar, translational, rotational and general plane motion). Connections between the velocity and acceleration of the different points of a</td>
</tr>
</tbody>
</table>
motion along a two or three dimensional curve.

Practice: Particle kinetics problems II

6th week:
Lecture: Kinematics of a rigid body II
Rolling motion without slipping. Description of the plane motion of a rigid body in a time interval. Pole curves.
Practice: Rigid body kinematics problems

8th week: 1st drawing week

9th week:
Lecture: Kinetics of a rigid body I
Newton’s laws and theorem of kinetics for rigid bodies (impulse-momentum, angular impulse-angular momentum and work-energy theorems). Special motion types: Rotating and swinging about an axis, rolling without slipping.
Practice: Rigid body kinetics problems

11th week:
Practice: Generating the equations of motion for single- and multiple degrees of freedom (DOF) systems.

13th week:
Lecture: Investigation and properties of the forced vibrations of single DOF undamped and damped systems. Basic types of forced vibrating systems.

10th week:
Lecture: Kinetics of a rigid body II
Rigid body undergoing translational, rotational and general plane motion. Instantaneous centre of zero velocity and acceleration and procedure for the determination of them with calculation and construction.
Practice: Rigid body kinematics problems

7th week:
Lecture: Kinetics of a rigid body I
Basic concepts: centre of mass, momentum and angular momentum, moment of inertia and its calculation, parallel axis theorem, mechanical work.
Practice: Rigid body kinetics problems

12th week:
Lecture: Investigation and properties of the free vibrations of single DOF undamped and damped systems. Solution of the homogenous motion equation.
Practice: Calculation problems related to the free vibrations of single DOF undamped and damped systems.

14th week:
Lecture: Multiple DOF systems: introduction, basic properties, natural frequencies and modes, modal transform and decoupling.
Practice: Calculation examples of several kinds of forced vibrations in case of single DOF undamped and damped systems.

Practice: Calculation problems related to the free and forced vibrations of multiple DOF undamped and damped systems.

15th week: 2nd drawing week

Requirements
A, for a signature:
Attendance at lectures is recommended, but not compulsory.
Participation at practice is compulsory. Students must attend the practices and may not miss more than three practice classes during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Student can’t make up a practice with another group. Attendance at practice will be recorded by the practice leader. Being late is counted as an absence. In case of further absences, a medical certificate needs to be presented. Missed practices should be made up for at a later date, to be discussed with the tutor.
During the semester there are two tests: the mid-term test is in the 8th week and the end-term test in the 15th week. Students have to sit for the tests.

B, for a grade:
The course ends in mid-semester grade based on the average grade of the two tests.
The minimum requirement for the mid-term and end-term tests is 60%. Based on the score of the tests separately, the grade for the tests is given according to the following (score/grade): 0-59 % = fail (1); 60-69 % = pass (2); 70-79 % = satisfactory (3); 80-89 % = good (4); 90-100 % = excellent (5).
If the score of any test is below 60, the student once can take a retake test covering the whole semester material.

Materials Engineering

Code: MK3ANISG06RX17-EN
ECTS Credit Points: 6
Evaluation: mid-term grade
Year, Semester: 1st year, 2nd semester
Its prerequisite(s): Engineering Physics
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 3+2
Topics:
The aim of the course is to give the basic, and useful material science knowledge to our students, through the presentation of special materials and its tangible analysis. Additionally, students can get closer to medical materials, which are currently being developed at a remarkable scale.

Literature:
Compulsory:

- Nicolais, Luigi; Meo, Michele; Milella, Eva: Composite Materials: A Vision for the Future, 2011 Springer Verlag
- C.P. Poole, F.J. Owens: Introduction to nanotechnology, Wiley Interscience, 2003

Schedule

<table>
<thead>
<tr>
<th>1st week</th>
<th>Registration week</th>
</tr>
</thead>
</table>
| 2nd week: | Lecture: Overview of the groups of engineering materials and presentation of the latest material science results
Practice: Preparation of a metallographic sample for semester task |
| 3rd week: | Lecture: Metals I - overview and presentation of metallic alloys
Practice: Preparation of a metallographic sample for semester task |
| 4th week: | Lecture: Metals II - manufacturing technology of metals
Practice: Preparation of a metallographic sample for semester task |
| 5th week: | Lecture: Metals III – Material testing and qualification
Practice: Preparation of a metallographic sample for semester task |
| 6th week: | Lecture: Metals IV – Theoretical background f metal alloys
Practice: Microscopic analysis to complete the semester task |
| 7th week: | Lecture: Polymer I - Overview of Industrial Polymers, Production Technology
Practice: Microscopic analysis to complete the semester task |
| 8th week: | Lecture: Polymer II - Certification procedures for industrial polymers, case studies
Practice: Microscopic analysis to complete the semester task |
| 9th week: | Lecture: Ceramics I - Overview
Practice: Microscopic analysis to complete the semester task |
| 10th week: | Lecture: Ceramics II - Overview
Practice: Microscopic analysis to complete the semester task |
Practice: Microscopic analysis to complete the semester task

11th week:
Lecture: Ceramics II - Production technology
Practice: Measurement of toughness toughness and theoretical strength calculation of the ceramic coating of the neural implant.

12th week:
Lecture: Ceramics III - Qualification procedures
Practice: Measurement of toughness toughness and theoretical strength calculation of the ceramic coating of the neural implant.

13th week:
Lecture: Composite materials.
Practice: Presentation of semester task

14th week:
Lecture: Special and Biocompatible materials.
Practice: Microscopic analysis of human implants

15th week: 2nd drawing week

Requirements

A, for a signature:
Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three practice classes during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students can’t take part in any practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed practice classes must be made up for at a later date, being discussed with the tutor.

During the semester there are two tests: the mid-term test is on the 8th week and the end-term test is on the 15th week. Students must sit for the tests.

B, for a grade:
The course ends in a mid-semester grade based on the average grade of the two tests.

The minimum requirement of the mid-term and the end-term test is 60% separately. The grade for each test is given according to the following (score/grade): 0-59 % = fail (1); 60-69 % = pass (2); 70-79 % = satisfactory (3); 80-89 % = good (4); 90-100 % = excellent (5).

If the score of any test is below 60, the student once can take a retake test of the whole semester material.
Law and Ethics

Code: MK3JOGEM04XX17-EN
ECTS Credit Points: 4
Evaluation: mid-semester grade
Year, Semester: 1st year, 1st semester
Its prerequisite(s): -
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+0

Topics:
This subject helps the students to understand the basics of a legal relationship. The subject also covers the organization of power, duties, and functions of public authorities of all kinds engaged in administration; their relations with one another and with citizens and non-governmental bodies; legal methods of controlling public administration; and the rights and liabilities of officials. The subject also helps the students understand the organization of a national legislature, the structure of the courts, the characteristics of a cabinet, and the role of the head of state, and the government. It introduces sources of law and legal method, business organizations and legal relationships, contracts including the supply of goods and services. Since Hungary is a part of the European Union the subjects also covers the basic knowledge of European Union Law. Students will learn about the concepts and fundamental values of decent human conduct including the universal values and basic human rights.

Literature:
Compulsory:

- The basic Law of Hungary, Lóránt Schink, Balázs Schanda, András Zs. Varga, Clarus Press, 9781905536-45-0

Schedule

<table>
<thead>
<tr>
<th>1st week Registration week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd week</td>
</tr>
<tr>
<td>Lecture: The introduction of Hungarian legal system, the basics, the Constitution, and the sources of law in Hungary and in</td>
</tr>
<tr>
<td>3rd week:</td>
</tr>
<tr>
<td>Lecture: The basics of state administration, the legislative, executive bodies, the Parliament, the Government, the Head of state. The court system in general.</td>
</tr>
</tbody>
</table>
the European Union. The fundamental values, Hungary and basic human rights.

4th week:
Lecture: The role of the local governments in Hungary, and the institutes of the local administration.

6th week:
Lecture: The basic legal phrases of the civil law in Hungary and in the law of the European Union, the sources of law, the legal relationships, the law system.

8th week: 1st drawing week

9th week:
Lecture: The most important features and rules of contracts in Hungarian and EU Law. The rules of the freedom of the contracts.

11th week:
Lecture: The working and development of the law system and sources of law in practice. The basics of Ethics and Universal values.

13th week:
Lecture: The Hungarian legal system compared with other legal systems in the European Union, examining the continental legal system, and the common law.

15th week: 2nd drawing week

Requirements
A, for a signature:
Attendance at lectures is recommended, but not compulsory.

B, for a grade:
The course ends in mid-semester grade based on the average grade of the two tests.
The minimum requirement for the mid-term and end-term tests is 60%. Based on the score of the tests separately, the grade for the tests is given according to the following
(score/grade): 0-59 % = fail (1); 60-69 % = pass (2); 70-79 % = satisfactory (3); 80-89 % = good (4); 90-100 % = excellent (5).
If the score of any test is below 60, the student once can take a retake test of the whole semester material.

Economics for Engineers

Code: MK3KOZMM04XX17-EN
ECTS Credit Points: 4
Evaluation: exam
Year, Semester: 1st year, 2nd semester
Its prerequisite(s): -
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 1+2

Topics:

Literature:
Compulsory: -

Recommended:
Schedule

1\(^{st}\) week Registration week

2\(^{nd}\) week:
Lecture: The Scope and Method of Economics

Practice: Calculation/team problems: The circular flow Diagram. Case study examination.

3\(^{rd}\) week:
Lecture: Measuring national output and national income (Gross Output, Gross Domestic Product, calculating GDP, real versus nominal GDP, the components of the GDP, the expenditure approach, the income approach, GDP deflator, Gross National Income, and Gross National Disposable income). Measuring the cost of living (GDP and Social Welfare, the Consumer Price Index, GDP deflator versus CPI, real and nominal interest rate).

Practice: Calculation/team problems: The expenditure approach. The difference between real GDP and nominal GDP. Macroeconomic indicators.

4\(^{th}\) week:
Lecture: Market demand and supply, equilibrium. The Keynesian Theory of consumption, consumption function, marginal propensity to consume, planned investment, saving function, marginal propensity to saving, aggregate output, determination of equilibrium output, the multiplier, IS curve.

Practice: Calculation/team problems: Market demand and supply, equilibrium. Two sector model.

5\(^{th}\) week:
Lecture: The government and fiscal policy. Government purchases, taxes, disposable income, government budget deficit and surpluses, determination of equilibrium output, fiscal policy, the government spending multiplier, the tax multiplier. Average tax rate, tax wedge, and marginal tax rate.

Practice: Calculation/team problems: Fiscal policy and the equilibrium. Average tax rate, tax wedge, and marginal tax rate.

6\(^{th}\) week:

Practice: Calculation/team problems: Demand and supply in an open economy. Equilibrium output in an Open Economy, net exports.

7\(^{th}\) week:
Lecture: The meaning of money, the functions of money, measuring the supply of money. The creation of money, required reserve ratio. The money multiplier. Open market operations. Fisher effect (nominal and real interest rate). Banking system, Commercial banking.

Practice: Calculation/team problems: The money multiplier. Fisher effect (nominal and real interest rate).

8\(^{th}\) week: 1\(^{st}\) drawing week
9th week:
Lecture: The demand for money. Supply and demand in the money market. The equilibrium interest rate. The LM curve. The equilibrium price-level.
Practice: Mid-Term Test I

10th week:
Lecture: Aggregate demand curve and aggregate supply curve. The effects of a shift in aggregate demand, the Equilibrium. The IS-LM model. Fiscal and monetary policy.
Practice: Calculation/team problems: The demand for money. Supply and demand in the money market. The equilibrium interest rate.

11th week:
Lecture: The demand for labour, the supply of labour. The labour force, working-age population, active and inactive population, labour participation rate. Supply curve and demand curve, equilibrium.
Practice: Calculation/team problems: Examination of the fiscal and monetary policy.

12th week:
Lecture: Unemployment, the unemployment rate, the activity rate. Types of unemployment (voluntarily and involuntarily unemployment; structural, frictional and cyclical unemployment). Okun law. Social and economic effect.
Practice: Calculation/team problems: The labour force, working-age population, active and inactive population, labour participation rate.

13th week:
Lecture: Inflation; (Price level, inflation rate, definition and measuring of inflation, types and causes of inflation, demand-pull inflation and cost-push inflation, The Philips curve: unemployment rate and inflation rate).
Practice: Calculation/team problems: Supply curve and demand curve, equilibrium. Disequilibrium in the labour market.

14th week:
Lecture: Growth (sources of economic growth, human capital, education and skills), Economic growth around the World. Sustainable development.
Practice: Calculation/team problems: demand-pull inflation and cost-push inflation.

15th week: 2nd drawing week

Requirements

A, for a signature:
Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three occasions during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students can’t take part in any practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further
absences, a medical certification needs to be presented. Missed practice classes must be made up for at a later date, being discussed with the tutor.

During the semester there are two tests: the mid-term test on the 7th week and the end-term test on the 15th week. Students must sit for the tests.

B, for a grade:

The course ends in an examination.

The minimum requirement of the mid-term, the end-term test and the teamwork is 50% separately. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following table:

<table>
<thead>
<tr>
<th>Score Range</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-49 %</td>
<td>fail (1)</td>
</tr>
<tr>
<td>50-62 %</td>
<td>pass (2)</td>
</tr>
<tr>
<td>63-75 %</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>76-89 %</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100 %</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>

If the score of any test is below 50%, the student once can take a retake test of the whole semester material.

An offered grade: It may be offered for the students if the average of the mid-term test, end-term tests and the teamwork is at least good (4). The offered grade is the average of them.

Microeconomics and Economical Processes of Enterprises for Engineers

Code: MK3MIKVM04XX17-EN
ECTS Credit Points: 4
Evaluation: exam
Year, Semester: 2nd year, 1st semester
Its prerequisite(s): Economics for Engineering
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 1+2

Topics:

Literature:

or

Recommended:

Schedule

1st week Registration week

2nd week:

Practice: Calculation/team problems: equilibrium price and quantity; market demand and individual demand; shifts versus movements along the demand curve (supply curve); market supply and individual supply; shifts versus movements along the supply curve.

3rd week:

Practice: Calculation/team problems: Relationship between utility and demand. Individual and market demand functions. Consumer surplus

4th week:
Lecture: Demand and supply together, market equilibrium. The elasticity of demand (price elasticity of demand, cross price elasticity of demand, income elasticity of demand). The elasticity of supply. Total revenue and the price elasticity of demand.

5th week:

Practice: Calculation/team problems: Calculation of elasticity of demand, relationship between price elasticity of demand and total revenue.

6th week:

Practice: Calculation/team problems: Average product of labour (capital), marginal product of labour (capital), relationship between marginal product and average product.

8th week: 1st drawing week

9th week:
Lecture: Main characteristics of perfect competition, marginal cost, average costs of production, profit-maximizing output, shut down and breakeven point, the competitive firm’s supply curve. Calculating problems (marginal average, total revenue, average and marginal profit, profit-maximizing output, marginal cost curve and supply curve).

Practice: Mid-Term Test I

11th week:
Lecture: Why Monopoly arise, Monopoly (the profit-maximization condition; average revenue, marginal revenue, total revenue curves).

Problems (calculation of the profit-maximization output and price. Relationship between marginal revenue and linear demand curve).

Practice: Calculation/team problems: Profit maximization condition for monopoly.

10th week:
Lecture: Individual and market supply curve, main condition of the profit maximization and cost minimization, Cost-benefit analysis, economical examinations.

Practice: Calculation/team problems: Profit maximization condition for competitive market.

12th week:

Practice: Calculation/team problems: Monopoly versus perfect competition. Producer surplus and deadweight loss.
13th week:
Lecture: Main characteristics of oligopoly and monopolistic competition. Markets with a few sellers, product differentiation.
Practice: Calculation/team problems: Oligopoly market behaviour.

14th week:
Practice: Calculation/team problems: Monopoly, Oligopoly and perfect competition. Taxes and efficiency.

15th week: 2nd drawing week

Requirements
A, for a signature:
Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three occasions during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students can’t take part in any practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed practice classes must be made up for at a later date, being discussed with the tutor.

During the semester there are two tests: the mid-term test on the 7th week and the end-term test on the 15th week. Students must sit for the tests.

B, for a grade:
The course ends in an examination.
The minimum requirement of the mid-term, the end-term test and the teamwork is 50% separately. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following table:

The grade is given according to the following (score/grade): 0-49 % = fail (1); 50-62 % = pass (2); 63-75 % = satisfactory (3); 76-89 % = good (4); 90-100 % = excellent (5).

If the score of any test is below 50%, the student once can take a retake test of the whole semester material.

An offered grade: It may be offered for the students if the average of the mid-term test, end-term tests and the teamwork is at least good (4). The offered grade is the average of them.
Quality and Technical Management

Code: MK3MINMM04XX17-EN
ECTS Credit Points: 4
Evaluation: exam
Year, Semester: 3rd year, 1st semester
Its prerequisite(s): Microeconomics and Economical Processes of Enterprises for Engineers
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+2

Topics:
The aim of the course is to provide students with a comprehensive picture of the organization’s operations and the associated management and organizational roles and tasks. The aim of the course is to give students the opportunity to share with the company’s quality management techniques, the application of which in the European Union, as well as in Hungary, is an essential element of market competitiveness.

Literature:
Compulsory:

Schedule

<table>
<thead>
<tr>
<th>1st week Registration week</th>
</tr>
</thead>
</table>

2nd week:
Lecture: Basics of Quality management
Practice: Analyze examples

3rd week:
Lecture: The role of quality management in the industry
Practice: PDCA project

4th week:
Lecture: Process Management
Practice: Create a flowchart

5th week:
Lecture: Quality Planning
Practice: Developing a Quality Plan
6th week:
Lecture: Quality Management Methods I
Practice: Ishikawa, Pareto Analysis, 5W

8th week: 1st drawing week
9th week:
Lecture: Engineering management
Practice: Case study

11th week:
Lecture: Management functions, manager roles, tasks
Practice: Situational tasks

13th week:
Lecture: Human Resource Management
Practice: Recruitment, selection, work planning

15th week: 2nd drawing week
7th week:
Lecture: Quality Management Methods II
Practice: QFD, Kano model, 5s, 8D report

10th week:
Lecture: Company and its surroundings
Practice: SWOT, Pestle analyzes

12th week:
Lecture: Organization Theory
Practice: Process Development, Project Management

14th week:
Lecture: Innovation Management
Practice: Business Plan

Requirements
A, for a signature:
Participation at lectures is compulsory. Students must attend lectures and may not miss more than three of them during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at lectures will be recorded by the lecturer. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed lectures must be made up for at a later date, being discussed with the tutor.

Students have to write two midterm tests during the semester. The first (40 points max) in the 8th, the second (40 points max) in the 14th week. At the end of the semester everyone will get a seminar grade on the basis of the following (score/grade): 0-39 = fail; 40-50 = pass (2); 51-60 = satisfactory (3); 61-70 = good (4); 71-80 = excellent (5).

If somebody fails then he has to write both tests in the 1st week of the exam period again. If the result is 40 points (50%) or better, then he can take an exam. If somebody has to repeat his midterm tests then his seminar grade can’t be better than (2).

There will be homework from week to week. Only students who have handed in all their homework at the time of the midterm test will be allowed to write it. The problems in the midterm tests will be selected from the homework assignments.

B, for a grade:
Everybody will get an exam grade for their exam. The final grade will be the average of the seminar and exam grade. If it is for example (3.5) then the lecturer decides if it is (3) or (4).
Subject group “Professional Subjects”

Basics of Mechatronics

Code: MK3MEALR4RX17-EN
ECTS Credit Points: 4
Evaluation: exam
Year, Semester: 1st year, 1st semester
Its prerequisite(s): -
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+2

Topics:
The Basics of Mechatronics module has the goal to found the view after high school of an engineering student, an engineer manager and technical standpoint. The important attribute of mechatronics is the interrogation of the building blocks system, this is why it is especially important to gain a deep insight into the foundation, which during the duration of the studies will make it easier to plan the mechatronics system. We will take a look over the most important ways and actual trends in mechatronics. We will try to shed light, so that the description of the physical appearances during the engineering practice it will be known what mathematical approaches will be needed and later on we will take on other subjects as well. The job of an engineer is a lot of times physical reality mixed with abstract math and making a connection between the two. The module will try to shed light on both of these sides.

Literature:
Recommended:
- Husi Géza: Bond Graph DE MK jegyzet
- Husi Géza: Practical Tasks

Schedule

<table>
<thead>
<tr>
<th>1st week Registration week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd week:</td>
</tr>
<tr>
<td>Lecture: Industry 4.0 mechatronics approach, the place of mechatronics if the field of engineering sciences.</td>
</tr>
<tr>
<td>Practice: Examples of four jointed mechanism themes (movement, increasing</td>
</tr>
</tbody>
</table>

| 3rd week: |
| **Lecture:** Description of moving machines and introduction of their problems and on planar four jointed mechanism. |
| **Practice:** Examples of four jointed mechanism themes (movement, increasing |
speed and strength and emphasis description exercises).

4th week:
Lecture: Physical effects and signs of decomposing components, analytical and numerical models, mechatronics, as point of view, classical mechatronics.
Practice: Examples of four jointed mechanism themes (movement, increasing speed and strength and emphasis description exercises).

6th week:
Practice: Bond graphs appliance.

8th week: 1st drawing week
9th week:
Lecture: Modeling and simulation of mechatronics systems. Creating model – theoretical steps. The role of creating models in mechatronics planning.
Practice: Modeling four jointed mechanisms.

11th week:
Lecture: System technics: Finite dimension dynamic system, inscription of equation.
Practice: Modeling of thermodynamics 2.

13th week:
Lecture: System techniques: mathematical tools SISO LTI investigation of the systems functioning, Laplace operational province, bilinear appearance of frequencies reception.
Practice: strain gauge stamped acceleration sensor modelling 1.

15th week: 2nd drawing week

10th week:
Lecture: System technics: foundation concepts, grouping the systems.
Practice: Modeling of electrical machines.

12th week:
Lecture: System technics: Finite dimension dynamic system, inscription of equation.
Practice: Modeling of thermodynamics 2.

14th week:
Lecture: System techniques: the most important control practice.
Practice: Strain gauge stamped acceleration sensor modelling 2.
Requirements

A, for a signature:
Participation at practice, according to Rules and Regulations of University of Debrecen. The correct solution of homework and submission before deadline. Solving assorted tasks.

B, for a grade:
Oral exam on theoretical part.

Informatics (Labview)

Code: MK3LABVA4RX17-EN
ECTS Credit Points: 4
Evaluation: mid-semester grade
Year, Semester: 1st year, 2nd semester
Its prerequisite(s): -
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 0+4

Topics:

Literature:
Compulsory:
Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Practice</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st week</td>
<td>Registration week</td>
<td></td>
</tr>
<tr>
<td>2nd week</td>
<td>Programming Basics</td>
<td>Phases of programming, problem solution, programming methods, specification, algorithm design, basics of graphical programming.</td>
</tr>
<tr>
<td>3rd week</td>
<td>Boolean algebra</td>
<td>Number representation, binary system, data types, operations with numbers, arrays, matrix operations.</td>
</tr>
<tr>
<td>4th week</td>
<td>Developing environment</td>
<td>Structure of LabVIEW Program, front panel, block diagram, navigating, menu overview, Context Help</td>
</tr>
<tr>
<td>5th week</td>
<td>Branches, Structures</td>
<td>Selection controls: Select, Case Structure</td>
</tr>
<tr>
<td>6th week</td>
<td>Cycles</td>
<td>Repeat controls: For Loop, While Loop, tunnels, shift registers</td>
</tr>
<tr>
<td>7th week</td>
<td>Plotting data</td>
<td>Data linking, clusters, Waveform chart, XY Graph</td>
</tr>
<tr>
<td>8th week</td>
<td>1st drawing week, Test 1</td>
<td></td>
</tr>
<tr>
<td>9th week</td>
<td>Modularity</td>
<td>Modular applications, SubVI creation, icon and connector pane.</td>
</tr>
<tr>
<td>10th week</td>
<td>File operations</td>
<td>Basic I/O operations, simple and complex file structure.</td>
</tr>
<tr>
<td>11th week</td>
<td>Data Acquisition</td>
<td>Hardware: myDAQ Device, software: DAQmx, MAX, configuration, measuring</td>
</tr>
<tr>
<td>12th week</td>
<td>Controls</td>
<td>Analog and digital input and output, serial and parallel communication</td>
</tr>
<tr>
<td>13th week</td>
<td>Design Techniques</td>
<td>Sequential programming, parallelism, state programming, state machine</td>
</tr>
<tr>
<td>14th week</td>
<td>Summary</td>
<td>Consultation, homework submission, sample test</td>
</tr>
<tr>
<td>15th week</td>
<td>2nd drawing week, Test 2</td>
<td></td>
</tr>
</tbody>
</table>

Requirements

A, for a signature:
Participation at practice, according to Rules and Regulations of University of Debrecen. The correct solution of homework and submission before deadline. Solving assorted tasks.

B, for a grade:
The final grade is based on the test and task results and active participation.
Electrotechnics

Code: MK3ELTER06RX17-EN
ECTS Credit Points: 6
Evaluation: exam
Year, Semester: 1st year, 2nd semester
Its prerequisite(s): -
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+2

Topics:
Introduction to DC circuits: voltage, current, basic components. Network analysis: Ohm’s Law, Kirchhoff’s Law, current and voltage divider, superposition, Thevenin and Norton’s Law. Alternating current circuits: sinusoidal wave, calculation on the complex plane, power and effective values. DC and AC power. Transient signals in the AC circuits: series and parallel RLC circuits. 3 phases circuit.

Literature:
Compulsory:

Schedule

<table>
<thead>
<tr>
<th>1st week Registration week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd week:</td>
</tr>
<tr>
<td>Lecture: Electrostatics, DC networks: basic electrical concepts of electric charge, electric current (amperage), electric field, electric field work, electric voltage (potential), electric circuit</td>
</tr>
<tr>
<td>Practice: General description, laboratory regulations, Safety regulations and safety instruction</td>
</tr>
</tbody>
</table>

| 3rd week: |
| **Lecture:** Power source (ideal real), Power Source (ideal for real), Consumer, Ohm’s Law, Resistance - design, characteristic data, division, marking according to IEC standard. |
| **Practice:** Introduction to measurements and instrumentation (measuring error, power supply, digital multimeter, signal generator) |

| 4th week: |
| **Lecture:** Passive resistance of bipolar networks, Star-delta, delta-star conversion, Electrical work, electric power, efficiency |

| 5th week: |
| **Lecture:** Network analysis: Kirchhoff’s laws, Voltage divider, potentiometer, extending measuring range of a Volt meter current |
Practice: 1st measurement: measuring the characteristics of DC voltage (U, I, RB, P) using Ohm's Law. Report writing.

6th week:
Lecture: Network analysis: Nodal analysis, Mesh analysis, superposition theory
Practice: 3rd measurement: measuring the values of DC circuit. Using voltage and current divider. Report writing.

8th week: 1st drawing week
9th week:
Lecture: AC circuit, complex number, AC circuit mean value (RMS).
Practice: 5th measurement introduction to AC measurements and instrumentation (AC type digital multimeter, signal generator, oscilloscope, LRC meter). Report writing.

11th week:
Lecture: AC circuit network analysis, AC Kirchhoff's laws
Practice: 7th measurement: alternating current analysis of capacitive and inductive elements. Analysis of serial and parallel RLC circuits. Report writing.

13th week:
Lecture: Transient signals in the AC circuits
Practice: 9th measurement: Measuring of serial RLC circuit. Report writing.

15th week: 2nd drawing week

Practice: 2nd measurement: measuring the values of DC circuit. Using Kirchhoff's laws. Report writing.

7th week:
Lecture: Network analysis: Norton and Thevenin theory
Practice: 4th measurement: Perform a complex DC measurement and calculation task. Report writing.

10th week:
Practice: 6th measurement: Alternating current, voltage characteristics measurement (U_{eff}, I_{eff}, f, P, waveform) using Ohm’s law. Report writing.

12th week:
Lecture: Performance of AC circuits, power factor correction, Three-phase systems
Practice: 8th measurement: alternating current analysis of wien-bridge. Report writing.

14th week:
Practice: 10th measurement: Measuring of parallel RLC circuit. Report writing.

Requirements
A, for a signature:
Attendance at lectures is recommended, but not compulsory. Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be
signed and the student must repeat the course. A student can’t make up a practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. Missed practice classes must be made up for at a later date, being discussed with the tutor. Active participation is evaluated by the teacher in every class. If student’s behavior or conduct doesn’t meet the requirements of active participation, the teacher may evaluate his/her participation as absence because of the lack of active participation in class. During the semester there are one test. Students have to sit for these tests.

Preparing measurement reports until deadline.

B, for a grade:

At the end of the course an exam must be taken. The minimum requirement for end-term test is 41%. Score Grade 0-40 fail (1) 41-55 pass (2) 56-70 satisfactory (3) 71-85 good (4) 86-100 excellent (5)

Electronics I

Code: MK3ELT1R06RX17-EN
ECTS Credit Points: 6
Evaluation: exam
Year, Semester: 2nd year, 1st semester
Its prerequisite(s): Electromagnetism
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+4

Topics:

Literature:

Compulsory:
Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st week</td>
<td>Registration week</td>
<td></td>
</tr>
<tr>
<td>2nd week</td>
<td>Lecture: Pure and doped semiconductor characteristics, PN junction behavior at forward and reverse bias conditions.</td>
<td>Practice: Safety regulations, laboratory order, the use of measuring instruments.</td>
</tr>
<tr>
<td>3rd week</td>
<td>Lecture: Characteristics and applications of semiconductor diodes, the rectifier circuit operation, the one-way, two-way rectifier circuits operation.</td>
<td>Practice: Silicon diode opening and closing characteristics measurements. Analysis of rectifier circuits. Report writing.</td>
</tr>
<tr>
<td>4th week</td>
<td>Lecture: Bipolar transistor structure, gain, transistor parameters and characteristics, the FE connection, adjusting the set point.</td>
<td>Practice: DC specific analysis of common emitter basic circuit. Report writing.</td>
</tr>
<tr>
<td>5th week</td>
<td>Lecture: Areas of application of bipolar transistor, circuits transistor basic (CB, CC circuits),</td>
<td>Practice: AC specific analysis of common emitter basic circuit. Report writing.</td>
</tr>
<tr>
<td>9th week</td>
<td>Lecture: Operation and characteristics of basic operational amplifier circuits (inverting, non-inverting, follower basic circuit)</td>
<td>Practice: Analysis of summing operational amplifier basic circuit. Report writing.</td>
</tr>
<tr>
<td>10th week</td>
<td>Lecture: Operation and characteristics of basic operational amplifier circuits (summing, differential, differentiator and integrator basic circuit)</td>
<td>Practice: Analysis of differentiator operational amplifier basic circuit. Report writing.</td>
</tr>
<tr>
<td>11th week</td>
<td>Lecture: Operation and characteristics of basic operational amplifier circuits (summing, differential, differentiator and integrator basic circuit)</td>
<td>Practice: Analysis of differentiator operational amplifier basic circuit. Report writing.</td>
</tr>
<tr>
<td>12th week</td>
<td>Lecture: Using of the operation amplifier</td>
<td></td>
</tr>
</tbody>
</table>
13th week:
Lecture: Bode and Nyquist diagram

14th week:
Lecture: Filters: Low and high pass filter, band pass filter.

15th week: 2nd drawing week

Requirements
A, for a signature:
Attendance at lectures is recommended, but not compulsory. Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can’t make up a practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. Missed practice classes must be made up for at a later date, being discussed with the tutor. Active participation is evaluated by the teacher in every class. If student’s behavior or conduct doesn’t meet the requirements of active participation, the teacher may evaluate his/her participation as absence because of the lack of active participation in class. During the semester there are one test. Students have to sit for these tests.
Preparing measurement reports until deadline.

B, for a grade:
At the end of the course an exam must be taken. The minimum requirement for end-term test is 41%. Score Grade 0-40 fail (1) 41-55 pass (2) 56-70 satisfactory (3) 71-85 good (4) 86-100 excellent (5)

Mechatronic Devices (Sensors, Actuators, Motors)
Code: MK3ERZBR04RX17-EN
ECTS Credit Points: 4
Evaluation: mid-semester grade
Year, Semester: 2nd year, 2nd semester
Its prerequisite(s): Electrotechnics
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+2
Topics:

Literature:
Compulsory:

Recommended:

Schedule

<table>
<thead>
<tr>
<th>1st weekRegistration week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd week:</td>
</tr>
<tr>
<td>Lecture: Definition, types of sensors, main error sources of transducers.</td>
</tr>
<tr>
<td>Practice: Application of ultrasonic distance sensor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4th week:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture: Position sensors.</td>
</tr>
<tr>
<td>Practice: Application of color sensors.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6th week:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture: Flowmeters.</td>
</tr>
<tr>
<td>Practice: Application of temperature and humidity sensors.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8th week: 1st drawing week</th>
</tr>
</thead>
<tbody>
<tr>
<td>9th week:</td>
</tr>
<tr>
<td>Lecture: Chemical sensors: humidity, gas sensor, etc.</td>
</tr>
<tr>
<td>Practice: Application of light sensors.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3rd week:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture: Static and dynamic sensor characteristics, environmental impacts on characteristics.</td>
</tr>
<tr>
<td>Practice: Application of pressure sensor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5th week:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture: Level sensors.</td>
</tr>
<tr>
<td>Practice: Application of level sensors.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7th week:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture: High temperature measurement.</td>
</tr>
<tr>
<td>Practice: Application of gas sensor.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10th week:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture: Measurement of kinematic quantities.</td>
</tr>
</tbody>
</table>
11th week:
Lecture: Force and torque measurement.
Practice: Application of vibration sensor.

12th week:
Lecture: Role of actuators, types of actuators.
Practice: QNET Mechatronics sensor trainer.

13th week:
Lecture: Electromechanical Actuators: DC Motors, AC Motors, Linear Motors, Stepper Motors, Midget Motors.
Practice: QNET HVAC trainer.

14th week:
Lecture: Piezoelectric actuators, magnetostriction actuators, magneto hydrodynamic activators, memory metal actuators.
Practice: QNET motors trainer.

15th week: 2nd drawing week

Requirements
A, for a signature:
Attendance at lectures is recommended, but not compulsory. Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can’t make up a practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. Missed practice classes must be made up for at a later date, being discussed with the tutor. Active participation is evaluated by the teacher in every class. The student has to prepare measurement report on every practise and has to submit the reports until deadline.

B, for a grade:
For the mid-semestet grade the student has to write two tests. The mid-semestet grade is received in scoring system (total 100) by the following:
- 1st test with 40 points
- 2nd test with 40 points
- quality of the measurement reports with 20 points

The mid-semestet grade is given according to the following table:

<table>
<thead>
<tr>
<th>Score</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-59</td>
<td>fail (1)</td>
</tr>
<tr>
<td>60-69</td>
<td>pass (2)</td>
</tr>
<tr>
<td>70-79</td>
<td>satisfactory (3)</td>
</tr>
<tr>
<td>80-89</td>
<td>good (4)</td>
</tr>
<tr>
<td>90-100</td>
<td>excellent (5)</td>
</tr>
</tbody>
</table>
Mechanical Machines and Machine Elements

Code: MK3MGEPG04RX17-EN
ECTS Credit Points: 6
Evaluation: exam
Year, Semester: 2nd year, 1st semester
Its prerequisite(s): Engineering Physics
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+2

Topics:
The series of lectures are based on the topics of mechanics. It reviews the standardised presentation of machine elements and tolerance and fit systems; the set-up of a machine group, the connection of its elements and their operation. In the course students acquire the features of prime mowers, machines; the different types of clutches and couplings; the bearing support of shafts and the most widely applied rolling bearings; different types of frictional and positive connection drives; types of brakes and application fields. In practice the different machines and machine elements are introduced and the selection of them from brand catalogues: rolling bearings, couplings, belt and pulley, chain and sprocket.

Literature:
Compulsory:

Recommended:

- Optibelt: Technical Manual V-belt drives
- Rexnord: Roller Chains
- SKF General Catalogue
Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st week</td>
<td>Registration week</td>
<td></td>
</tr>
<tr>
<td>2nd week</td>
<td>Lecture:</td>
<td>Tolerance and fit systems</td>
</tr>
<tr>
<td></td>
<td>Practice:</td>
<td>Calculation of tolerance types and fits</td>
</tr>
<tr>
<td>3rd week</td>
<td>Lecture:</td>
<td>Set-up of a machine group, operation and operation requirements</td>
</tr>
<tr>
<td></td>
<td>Practice:</td>
<td>Characteristics and operation features of prime mowers, machines and precondition of stable running</td>
</tr>
<tr>
<td>4th week</td>
<td>Lecture:</td>
<td>Linkage mechanisms, types of constraints. Statically determinate, indeterminate and unstable constructions</td>
</tr>
<tr>
<td></td>
<td>Practice:</td>
<td>Analyzing linkage mechanisms: suspension systems of vehicles and airplanes.</td>
</tr>
<tr>
<td>5th week</td>
<td>Lecture:</td>
<td>Construction details of shafts and its parts, functions. Keyed and splined joints of shafts transmitting the peripheral force.</td>
</tr>
<tr>
<td></td>
<td>Practice:</td>
<td>Construction of keyed and splined joints, sizing.</td>
</tr>
<tr>
<td>6th week</td>
<td>Lecture:</td>
<td>Shaft bearing systems. Most widely applied rolling bearings and their features.</td>
</tr>
<tr>
<td></td>
<td>Practice:</td>
<td>Introduction of different types of rolling bearings and choosing them from brand catalogue.</td>
</tr>
<tr>
<td>7th week</td>
<td>Lecture:</td>
<td>Bearing arrangements. Locating, non-locating bearing arrangement. Cross located bearing arrangements with adjusted or floating bearings. Selection of ball and roller bearings for service life.</td>
</tr>
<tr>
<td></td>
<td>Practice:</td>
<td>Explanation of shaft bearing constructions.</td>
</tr>
<tr>
<td>8th week</td>
<td>Lecture:</td>
<td>Seals, operation principles. Contacting and non-contacting seals and their application fields.</td>
</tr>
<tr>
<td></td>
<td>Practice:</td>
<td>Showing the different types of seals, choosing them from brand catalogues.</td>
</tr>
<tr>
<td>9th week</td>
<td>Lecture:</td>
<td>Heat balance of braking. Types of brakes, actuation of them, operation method.</td>
</tr>
<tr>
<td></td>
<td>Practice:</td>
<td>Stiff, flexible and universal joints. Introduction in lab and choosing from catalogues.</td>
</tr>
<tr>
<td>10th week</td>
<td>Lecture:</td>
<td>Clutches and couplings. Types, operation features, application fields.</td>
</tr>
<tr>
<td></td>
<td>Practice:</td>
<td>Types of belt drives, operation features, application fields.</td>
</tr>
</tbody>
</table>
Practice: Showing brakes. Analyzing the operation of them.

13th week:
Lecture: Types of chain drives, operation features, application fields.
Practice: Sprocket and chain constructions. Design of chain drive, applying design charts.

14th week:
Lecture: Types of gear drives. Operation and their application fields.
Practice: Explanation of gear drive constructions. Ratio calculation.

15th week: 2nd drawing week

Requirements

A, for a signature:
Attendance at lectures is recommended, but not compulsory. Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can’t make up any practice with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date, to be discussed with the tutor. Students are required to bring the drawing tasks and drawing instruments of the course to each practice class. Active participation is evaluated by the teacher in every class. If a student’s behavior or conduct doesn’t meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.

Students have to submit all the designing tasks as scheduled minimum at a sufficient level. During the semester there are two tests: the mid-term test in the 8th week and the end-term test in the 15th week. Students have to sit for the tests.

B, for a grade:
The course ends in an examination. Based on the average of the grades of the designing tasks and the examination, the exam grade is calculated as an average of them:
- the average grade of the two designing tasks
- the result of the examination

The minimum requirement for the mid-term and end-term tests and the examination respectively is 60%. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following (score/grade): 0-59 % = fail (1); 60-69 % = pass (2); 70-79 % = satisfactory (3); 80-89 % = good (4); 90-100 % = excellent (5).

If the score of any test is below 60, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.
An offered grade: it may be offered for students if the average grade of the designing tasks is at least good (3) and the average of the mid-term and end-term tests is at least good (3). The offered grade is the average of them.

Manufacturing Technologies

Code: MK3GYARG04RX17-EN
ECTS Credit Points: 4
Evaluation: mid-semester grade
Year, Semester: 2nd year, 1st semester
Its prerequisite(s): Engineering Physics
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+2

Topics:
During this semester the students learn the types of cutting machines, devices and tools. The students will know the types of basic cutting technologies (turning, drilling, milling, planning, grinding, etc.) and their characteristics. Introduction of the basic industrial design- and operation documentation procedure in manufacturing. Primary forming processes (casting, powder metallurgy, metallurgical, hot forming processes). After that the students will learn designing basic manufacturing tasks and calculating the necessary technological parameters for a given workpiece.

Literature:
Compulsory:

Recommended:
Schedule

1st week
Registration week

2nd week:
Lecture: The basic definitions of manufacturing processes, the types of machine tools
Practice: Introducing of the cutting laboratory and machine tools (*cutting laboratory*)

3rd week:
Lecture: Process of chip formation, tool wear and tool life
Practice: Calculation tasks for tool wear and tool life

4th week:
Lecture: The process and tools of turning technologies
Practice: Designing of turning technology

5th week:
Lecture: The process and tools of drilling and counterbore technologies
Practice: Designing of drilling and counterbore technologies

6th week:
Lecture: The process and tools of milling technologies
Practice: Designing of milling technologies

7th week:
Lecture: The process and tools of grinding technologies
Practice: Designing of grinding technology

8th week: 1st drawing week: Test I on cutting technologies

9th week:
Practice: The basic studies of technological planning on CNC machines, cutting tool selection.

10th week:
Lecture: Properties of materials. Industrial materials. The uniaxial tensile test. Upsetting test.
Practice: Basic studies of Computer Aided Manufacturing (CAM). The types of manufacturing systems

11th week:
Practice: Planning and finite element simulation of cold rolling technology (*SolidWorks and Simufact Forming*)

12th week:
Lecture: Classification of different forming processes. Types of rolling. Rolling operations. Equipment of rolling, rolling mills. Thread rolling, ring rolling.
Practice: Planning and finite element simulation of cold rolling technology (*SolidWorks and Simufact Forming*)

13th week:

14th week:

Practice: Planning and finite element simulation of die forging technology (SolidWorks and Simufact Forming).

Practice: Planning and finite element simulation of die forging technology (SolidWorks and Simufact Forming).

Requirements

A, for a signature:
Students have to visit the lectures and seminars. Three absences are acceptable during the seminar.
Students have to write two tests from the two parts of the lectures and seminars (cutting technologies and metal forming technologies). They have to write them for minimum at a sufficient level. Based on these result they will get the final practice mark.

B, for a grade:
The course ends in mid-semester grade. Based on the average of the marks of the planning task and the average of the test results, the mid-semester grade is calculated as an average of them:
- grade of the planning task
- average grade of the two tests

The minimum requirement for the mid-term and end-term tests is 60%. Based on the score of the tests separately, the grade for the tests is given according to the following (score/grade): 0-59 % = fail (1); 60-69 % = pass (2); 70-79 % = satisfactory (3); 80-89 % = good (4); 90-100 % = excellent (5).

If the score of any test is below 60, a student once can take a retake test covering the whole semester material.

Measurement and Data Acquisition

Code: MK3MERAR06RX17-EN
ECTS Credit Points: 6
Evaluation: Mid-Semester Grade, measurement report
Year, Semester: 2nd year, 2nd semester
Its prerequisite(s): Electronics I
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+2
Topics:

Literature:
Compulsory:

Recommended:

Schedule
1st week Registration week

2nd week:
Practice: General description about laboratory regulations. Accident prevention and safety education.

3rd week:
Lecture: Theoretical basis of Light electric effect sensors. The photodiode and photovoltaic structure, modes of operation and application. Multi-color LEDs. The structure and characteristics of optical interfaces. The scanner structure and characteristics of CCD sensors.
Practice: Examination of solar cell.

4th week:
Lecture: Types of photo resist and application. The structure and features of a phototransistor. The structure and use of a

5th week:
light pencil. The structure, characterization and application of a liquid crystal display.

Practice: Measurement of LED characteristics.

6th week:
Lecture: Thermoelectric sensors. The operating principles, construction and characteristics of an infrared motion sensor. Thermoelectric transducer coupling, the PVDF film. Thermocouples, semiconductor structure, function and features of metal thermometers and other thermometers.

Practice: Measurement of temperature.

8th week: 1st drawing week

9th week:
Lecture: A capacitive proximity switch. Its structure, working principle, characteristics and application areas.

Practice: Measuring of capacitive proximity switch.

11th week:
Lecture: Strain gages. Foil strain gauges, semiconductor strain gauge, strain sensor wires, one, two and four-sensing bridge circuits.

Practice: Measuring of strain gages.

13th week:
Lecture: Description of the main features of the NI LabVIEW software.

Practice: National Instruments with hardware and software. Edit VI. Measuring system construction, Troubleshooting practice.

15th week 2nd drawing week, End-term test

10th week:
Lecture: Ultrasonic sensors. Their structures, working principles, characteristics, and application areas.

Practice: Measuring of an ultrasonic distance sensor.

12th week:
Lecture: The Reed switch and magneto inductive sensors. Their structures, working principles, characteristics and Application areas.

Practice: Measuring of reed switch.

14th week:
Lecture: Structure of the NI data acquisition systems. DAQ connecting to your computer. **Practice:** Recording and evaluation of data measured by National Instruments Hardware.
Requirements

A, for a signature:

Attendance at lectures is recommended, but not compulsory. Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can’t make up a practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with absence. Missed practices should be made up for at a later date, being discussed with the tutor. Active participation is evaluated by the teacher in every class. If a student’s behaviour or conduct doesn’t meet the requirements of active participation, the teacher may evaluate his or her participation as an absence because of the lack of active participation in the class. Students have to submit all the twelve reports as scheduled minimum at a sufficient level. During the semester there are two tests: the mid-term test is in the 8th week and the end-term test in the 15th week.

B, for a grade:

Based on the average of the grades of the reports and the test results, the mid-sememter grade is calculated as an average of them: - the average grade of the twelve reports (50 %) - the grade of the tests (50 %). The minimum requirement for end-term test is 60%. Based on the score of the test separately, the grade for the test is given according to the following (score/grade): 0-59 = fail (1); 60-69 = pass (2); 70-79 = satisfactory (3); 80-89 = good (4); 90-100 = excellent (5).

Environmental, Health, Safety and Ergonomy

Code: MK3EHSAK04RX17-EN
ECTS Credit Points: 4
Evaluation: exam
Year, Semester: 2nd year, 2nd semester
Its prerequisite(s): -
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+2

Topics:

The subject covers three main topics:

Environment (E): In connection with environment protection the most important topics are introduced to the students. The subject includes air quality, noise protection, water protection, soil protection, and waste management side topics.

Health (H): Basics of labor and health are discussed. The impact of work on health and the health impact on working ability is also a side topic. The fundamentals of occupational health and work hygiene are also involved.
Safety (S): It involves the basics of labor safety and fire protection. The lectures discuss the personal, material and organizational requirements for safe work, ergonomic fundamentals, personal protective equipment, work safety reviews, employer checks, and workplace risk assessment. Industrial safety and security is also a side topic.

The lectures introduce the most important aspects and the practices focus on examples and plant visits.

Literature:

Recommended:

Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Lecture</th>
<th>Practice</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st</td>
<td>Registration week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd</td>
<td>Basics of Environmental Protection and Management</td>
<td>Introduction to environmental protection</td>
<td>Global issues on environmental protection</td>
</tr>
<tr>
<td>3rd</td>
<td>Air Quality Control</td>
<td>Basics of air pollution control, processes in the atmosphere, greenhouse gases, ozone layer, smog, acid rain</td>
<td>Exercises in connection with air pollution</td>
</tr>
<tr>
<td>4th</td>
<td>Environmental Noise</td>
<td>The basics of environmental noise</td>
<td>Noise measuring devices and techniques</td>
</tr>
<tr>
<td>5th</td>
<td>Water Protection</td>
<td>Water protection and quality, pollutants</td>
<td>Practice in connection with water protection</td>
</tr>
<tr>
<td>6th</td>
<td>Soil Protection</td>
<td>Protection of soil quality</td>
<td>Practice in connection with soil protection</td>
</tr>
<tr>
<td>7th</td>
<td>Waste Management</td>
<td>Waste management, possibilities, disposal, techniques and hazardous waste</td>
<td>Practice in connection with waste management</td>
</tr>
<tr>
<td>8th</td>
<td>1st drawing week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9th</td>
<td>Basics of labor safety and fire protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10th</td>
<td>Occupational Safety</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lecture: Personal, material and organizational requirements for safe work, ergonomic fundamentals
Practice: Practice in connection with labor safety I. (plant visit)

11th week: Labor and Health
Lecture: The impact of work on health and the health impact on working ability
Practice: Practice in connection with occupational health I.

13th week: Industrial Safety and Security
Lecture: Main goals of industrial safety and security
Practice: Practice in connection with industrial safety and security

15th week: 2nd drawing week

Requirements
A, for a signature:
Attendance at practice classes (absence up to the permissible level)
B, for a grade:
Test grade (2: from 50%)

Applied Automatization I

Code: MK3AAUT1R06RX17-EN
ECTS Credit Points: 6
Evaluation: Exam, measurement report
Year, Semester: 2nd year, 2nd semester
Its prerequisite(s): Electronics I
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+4

Topics:
Control engineering of funds and core control technology, feedback (closed-loop) control knowledge acquisition. Theoretical Foundations Control Technology. Control (open-loop)
and application control functions. Programmable Logic Controllers. Timers, counters, sequential controls. Tags of the control loop. Examination of the tags of the control loop steady state, linear transition state regulations, a description of the transitional state of the linear members. Examination of the closed-loop control. Stability and quality features. Selection and setting regulators. Control and feedback systems practical exercises using the PLC programming.

Literature:

Compulsory:

Recommended:

Schedule

<table>
<thead>
<tr>
<th>1st week Registration week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd week:</td>
</tr>
<tr>
<td>Lecture: The theoretical bases of control technology. Basic concepts, symbols and allocation. Comparison of control and feedback control. Subdivision of control and feedback control.</td>
</tr>
<tr>
<td>Practice: Realization of logic functions “AND, OR, NAND, NOR, XOR, XNOR” with relays.</td>
</tr>
</tbody>
</table>

| **3rd week:** |
| **Lecture:** Feedback control. Signs and characteristics of a control loop. Loop tags (a sensor, a signal generator, subtraction, signal processing, an amplifier, an actuator). |
| **Practice:** Realization of logic functions “AND, OR, NAND, NOR, XOR, XNOR” with digital circuits. |

| **4th week:** |
| **Lecture:** Control systems. Boolean algebra, basic operations (And, Or, Not). Basic identity of Boolean algebra. |
| **Practice:** Digital circuits realization of Flip-Flop circuits, RS-JK storage, MUX-DEMUX. |

| **5th week:** |
| **Lecture:** De Morgan's theorems. Two-variable logic functions (Nor, Inhibition, Antivalency, Equivalency, Implication). |
| **Practice:** Digital circuits realization of flip-flop circuits, RS-JK storage, MUX-DEMUX. |

| **6th week:** |
| **Lecture:** Functions to simplify algebraic and graphical way. Operation and programming |
| **7th week:** |
| **Lecture:** Linear Control Systems. Test methods (time domain, frequency domain, and transfer functions method). |
of freely programmable logic controllers (PLCs).

Practice: Operation of programmable logic controllers. Basic programming tasks with PLC.

| 8th week: 1st drawing week, Self-control test |

| 9th week: |
| Lecture: Linear control steady-state operation. Linear terms (P, I, D) and transmission coefficient. Linear coupling of tags (serial, parallel, feedback). |
| Practice: Application of different programming languages for programmable logic controllers. Medium programming tasks with PLC. |

| 10th week: |
| Lecture: A proportional tag, negative feedback through a proportional tag. Examination of feedback. |
| Practice: Medium level programming exercises with PLC. |

| 11th week: |
| Lecture: Analysis of proportional (type 0) control. Examination of integral (type 1) control. Gaining and measuring a concept loop. |
| Practice: Determine and analysis the transfer function of one-two variable proportional tag. Analyze the transition function of two storage proportional tags with MULTISIM software. |

| 12th week: |
| Lecture: Linear feedback control transition state. Typical testing functions. Linear tags differential equations. Transfer function preparation about transmission function. |
| Practice: Conditions and analysis of a variable storage differentiator tag and its transfer function. Proportional Integral (PI) tags transfer function analysis of the function using MULTISIM software. |

| 13th week: |
| Practice: Proportional Differential (PD) tags transfer function analysis of the function using MULTISIM software. |

| 14th week: |
| Practice: The Proportional-Integral-Derivative (PID) tag recording its transfer function and function analyzing. Optimization of measurement of different types of controllers. |

| 15th week: 2nd drawing week, End-term test |
Requirements

A, for a signature:

Attendance at lectures is recommended, but not compulsory. Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can’t make up a practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. Missed practice classes must be made up for at a later date, being discussed with the tutor. Active participation is evaluated by the teacher in every class. If a student’s behaviour or conduct doesn’t meet the requirements of active participation, the teacher may evaluate his/her participation as absence because of the lack of active participation in class. Students have to submit all the twelve reports as scheduled minimum at a sufficient level. During the semester there are one test: the end-term test in the 15th week. Students have to sit for these tests.

B, for a grade:

At the end of the course an oral exam must be taken. Based on the average of the grades of the reports and the test results, the mid-semester grade is calculated as an average of them: - the average grade of the twelve reports (30 %) - the grade of the tests (20 %) - the oral exam (50 %) The minimum requirement for end-term test is 60%. Based on the score of the test separately, the grade for the test is given according to the following (score/grade): 0-59 = fail (1); 60-69 = pass (2); 70-79 = satisfactory (3); 80-89 = good (4); 90-100 = excellent (5).

Applied Automatization II

Code: MK3AAUT2R06RX17-EN
ECTS Credit Points: 6
Evaluation: Mid-Semester Grade
Year, Semester: 3rd year, 1st semester
Its prerequisite(s): Applied Automatization I
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 0+6

Topics:
The most important industrial communication protocols are presented. Theoretical and practical relations PLC Modbus, CAN-bus, EtherCAT, PROFINET, TCP / IP protocol. The basic realization of the network connections of different communication architectures. Configure the listed industrial communication protocols. Getting to know a single
programming environment, programming languages and typical features (Ladder Diagram (LD), structured text (ST), Function Block Diagram (FBD), Instruction List (IL) and Sequential function chart (SFC). Are different types of presentations resolution PLC (Phoenix Contact, FESTO, BECHOFF) and internal structures of the main lines of programming. Practical programming in which logic functions, timer devices, counting devices, analog control problems must be implemented both in theory and practice. Modeling of real industrial processes.

Literature:

Compulsory:

Recommended:

Schedule

1st week Registration week

2nd week:
Practice: Introduction, Software, Hardware, Installation.

4th week:
Practice: Getting to know a single programming environment, programming language features and characteristics.

6th week:
Practice: Theoretical and practical relationships Modbus programming practice.

8th week 1st drawing week, 1st Mid-term test

9th week:
Practice: Theoretical and practical connections EtherCAT, programming practice.

11th week:
Practice: Theoretical and practical connections TCP / IP programming practice.

3rd week:
Practice: Configure industrial communication protocols.

5th week:
Practice: Implement basic network connections on different communication architectures.

7th week:
Practice: Theoretical and practical connections CANbus programming practice.

10th week:
Practice: Theoretical and practical connections PROFINET programming practice.

12th week:
Practice: Modeling industrial processes.
13th week:
Practice: Managing Real Industrial Processes.

14th week:
Practice: Complex management of industrial processes.

15th week 2nd drawing week, 2nd Mid-term test

Requirements
A, for a signature:
Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can’t make up a practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. Missed practice classes must be made up for at a later date, being discussed with the tutor. Active participation is evaluated by the teacher in every class. If student’s behavior or conduct doesn’t meet the requirements of active participation, the teacher may evaluate his/her participation as absence because of the lack of active participation in class.

B, for a grade:
Students have to fulfill a mid-term exercise at least for 50% to take part on the next practice classes. All students, who failed the mid-term exercise will not get a mid-semester grade. At the end of the semester, all students have to solve a real life problem in programming. Also a task, to make a complete documentation of the project file, using all the methods, mentioned during the semester. The course ends in a mid-semester grade. Based on the average of the grades of the tasks. The grade for the test is given according to the following table (score/grade): 0-50 = fail (1); 51-65 = pass (2); 66-75 = satisfactory (3); 76-85 = good (4); 86-100 = excellent (5).

Pneumatics and Hydraulics

Code: MK3PNEUR04G117-EN
ECTS Credit Points: 4
Evaluation: mid-semester grade
Year, Semester: 2nd year, 2nd semester
Its prerequisite(s): Basics of Mechatronics
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 0+4

Topics:
Preparation of compressed air. Application of pneumatic working and control elements. Use of way valves, closing and flow control elements. Pneumatic implementation of logical

Literature:

Compulsory:

Recommended:

Schedule

<table>
<thead>
<tr>
<th>1st week Registration week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd week:</td>
</tr>
<tr>
<td>Practice: Development of pneumatics. Compressed air properties. Pneumatic equipment economy. State equation of gases.</td>
</tr>
<tr>
<td>4th week:</td>
</tr>
<tr>
<td>Practice: Pneumatic actuators (structure cylinder, rotary actuators, sizing cylinders).</td>
</tr>
<tr>
<td>6th week:</td>
</tr>
<tr>
<td>Practice: Basic circuit (single- and double-acting cylinder controlling, control with And- Or elements, increase speed)</td>
</tr>
<tr>
<td>8th week 1st drawing week, 1st Mid-term test</td>
</tr>
<tr>
<td>9th week:</td>
</tr>
<tr>
<td>Practice: Structure and circuit diagrams (control, power supply) of hydraulic systems.</td>
</tr>
<tr>
<td>3rd week:</td>
</tr>
<tr>
<td>Practice: Compressed air production. Compressed air supply. Compressed air preparation.</td>
</tr>
<tr>
<td>5th week:</td>
</tr>
<tr>
<td>Practice: Generally about valves (way-, closing-, pressure managing-, stop-, time-).</td>
</tr>
<tr>
<td>7th week:</td>
</tr>
<tr>
<td>Practice: Functions of hydraulic equipment. Symbols and drawing techniques.</td>
</tr>
<tr>
<td>10th week:</td>
</tr>
<tr>
<td>Practice: Physical basics of hydraulics (pressure transmission, force transmission, way transmission, pressure ratio). Kind of flows.</td>
</tr>
</tbody>
</table>
11th week:
Practice: Equipment representation (layout drawings, wiring diagrams, operating charts). Power supply system components (gear motor, pump, filter, tank).

12th week:
Practice: Valves (method of construction, the nominal value, slide). Pressure control valves. Way valves (2/2, 3/2, 4/2, 4/3).

13th week:
Practice: Shut-off valves (check valve, controlled check valve). Flow control valves (one way control valves, 2 way flow control valve).

14th week:
Practice: Hydraulic cylinders (single, doubleacting, sealing, venting, buckling). Hydraulic motors.

15th week 2nd drawing week, 2nd Mid-term test

Requirements
A, for a signature:
Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can’t make up a practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. Missed practice classes must be made up for at a later date, being discussed with the tutor. Active participation is evaluated by the teacher in every class. If student’s behavior or conduct doesn’t meet the requirements of active participation, the teacher may evaluate his/her participation as absence because of the lack of active participation in class.

B, for a grade:
Students have to fulfill a mid-term exercise at least for 50% to take part on the next practice classes. All students, who failed the mid-term exercise will not get a mid-semester grade. At the end of the semester, all students have to solve a real life problem in programming. Also a task, to make a complete documentation of the project file, using all the methods, mentioned during the semester. The course ends in a mid-semester grade. Based on the average of the grades of the tasks. The grade for the test is given according to the following (score/grade): 0-50 = fail (1); 51-65 = pass (2); 66-75 = satisfactory (3); 76-85 = good (4); 86-100 = excellent (5).

Electropneumatics and Electrohydraulics

Code: MK3EPNER4RX17-EN
ECTS Credit Points: 6
Evaluation: mid-semester grade
Year, Semester: 3rd year, 1st semester
Its prerequisite(s): Pneumatics and Hydraulics

Further courses are built on it: Yes/No

Number of teaching hours/week (lecture + practice): 0+4

Topics:

Literature:

Compulsory:

Recommended:

Schedule

1st week Registration week

2nd week:
Practice: Development of electropneumatics. Pneumatic-electric transducers, relays.

3rd week:
Practice: The basic concepts of a control technology. Pneumatic and electropneumatic controls. Basics of electricity.

4th week:

5th week:
Practice: Sensors. Relays and contactors. Freely programmable controllers (PLC).

6th week:

7th week:
Practice: Relay controls. Relay controls applications. Direct and indirect control. Logic controls. Signal storage with relay.
8th week 1st drawing week, 1st Mid-term test

9th week:

10th week:
Practice: Electric drive proportional pneumatics. Proportional pressure control valves. Proportional valves.

11th week:
Practice: Electrical symbols. Electro-hydraulic controls. (hydraulic, electrical diagram, function graphs)

12th week:
Practice: Electro-hydraulic structure of equipment. Electrical basic concepts.

13th week:
Practice: Electro-hydraulic circuits (signal storage way control).

14th week:
Practice: Electro-hydraulic circuits (falling edge automatic mode).

15th week 2nd drawing week, Test 2

Requirements

A, for a signature:
Participation at practice classes is compulsory. A student must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student can’t make up a practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. Missed practice classes must be made up for at a later date, being discussed with the tutor. Active participation is evaluated by the teacher in every class. If a student’s behavior or conduct doesn’t meet the requirements of active participation, the teacher may evaluate his/her participation as absence because of the lack of active participation in class.

B, for a grade:
Students have to fulfil a mid-term exercise at least for 50% to take part on the next practice classes. All students, who failed the mid-term exercise will not get a mid-semester grade. At the end of the semester, all students have to solve a real life problem in programming. Also a task, to make a complete documentation of the project file, using all the methods, mentioned during the semester. The course ends in a mid-semester grade. Based on the average of the grades of the tasks. The grade for the test is given according to the followings (score/grade): 0-50 = fail (1); 51-65 = pass (2); 66-75 = satisfactory (3); 76-85 = good (4); 86-100 = excellent (5).
Electrical Machines and Drives

Code: MK3VHAIRO6RX17-EN
ECTS Credit Points: 6
Evaluation: mid-semester grade
Year, Semester: 3rd year, 2nd semester
Its prerequisite(s): Mechatronic Devices (Sensors, Actuators, Motors)
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+4

Topics:

Literature:
Compulsory:

Schedule

<table>
<thead>
<tr>
<th>1st week Registration week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd week:</td>
</tr>
<tr>
<td>Lecture: Classification of electrical energy converters.</td>
</tr>
<tr>
<td>Practice: Laboratory introduction and safety issues.</td>
</tr>
<tr>
<td>4th week:</td>
</tr>
<tr>
<td>Lecture: DC Machines: operating conditions.</td>
</tr>
<tr>
<td>Practice: DC motor start conditions.</td>
</tr>
<tr>
<td>3rd week:</td>
</tr>
<tr>
<td>Lecture: Direct Current electrical machines: structure, electrical and mechanical commutator.</td>
</tr>
<tr>
<td>Practice: DC motor start circuits.</td>
</tr>
<tr>
<td>5th week:</td>
</tr>
<tr>
<td>Lecture: Transformers: Theory of operation, induced voltage, open, short cut, and load conditions.</td>
</tr>
</tbody>
</table>
6th week:
Lecture: Tri-phase transformers.
Practice: Measurement of DC machines: mechanical and electrical variables and power.

7th week:
Lecture: Theory and application of rotating fields.
Practice: Transformers: calculation of iron core and copper losses.

8th week: 1st drawing week

9th week:
Lecture: Tri-phase transformers.
Practice: Measurement of transformers: open and short cut conditions.

10th week:
Lecture: Theory and application of rotating fields.
Practice: Transformers: calculation of iron core and copper losses.

11th week:
Lecture: Tri-phase induction motors: theory and operational conditions.
Practice: Synchronous motor starter circuits.

12th week:
Lecture: Tri-phase induction motors: load conditions and operations.
Practice: Synchronous motor starter circuits.

13th week:
Lecture: Special motors: EC and BLDC. Theory and operation.
Practice: Induction motor starter circuits.

14th week:
Lecture: Special motors: EC and BLDC. Theory and operation.
Practice: VSD: Variable speed drive practice. Commissioning.

15th week: 2nd drawing week

Requirements

A, for a signature:
Participation at practice, according to RR of UD. The correct solution of the project and submission before deadline.

B, for a grade:
The practical grade is the evaluation of the project.
Thermodynamic Processes

Code: MK3TERFR04RX17-EN
Code: MK3MOD1R06R117-EN
ECTS Credit Points: 4
Evaluation: exam
Year, Semester: 3\(^{rd}\) year, 2\(^{nd}\) semester
Its prerequisite(s): Basics of Mechatronics
Further courses are built on it: Yes/\(\text{No}\)
Number of teaching hours/week (lecture + practice): 2+2

Topics:

Literature:
Recommended:
- Robert H. Bishop: MEchatronics Handbook: Engineering thermodynamics (Chapter 12)
- Robert H. Bishop: MEchatronics Handbook: Sensors and actuators (Section Three)

Schedule

<table>
<thead>
<tr>
<th>1(^{st}) week</th>
<th>Registration week</th>
</tr>
</thead>
</table>
| 2\(^{nd}\) week: | Lecture: Thermodynamics concepts and definitions, Principles.
Practice: Thermodynamics principles practice. |
| 3\(^{rd}\) week: | Lecture: Extensive state variable balance: mass, energy, entropy balance.
Practice: Application examples practice. |
| 4\(^{th}\) week: | 5\(^{th}\) week: |
Lecture: Volume change in steady state.
Practice: Application examples practice.

6th week:
Lecture: Analytical derivation of state equations, ideal gas model.
Practice: State equation practice.

8th week: 1st drawing week
9th week:
Lecture: Thermodynamics models with Bond Graphs.
Practice: Modelling practice.

11th week:
Lecture: Electronics measurement of thermodynamics systems.
Practice: Measurement practice.

13th week:
Lecture: Digital control of thermodynamics system.
Practice: Digital control practices.

15th week: 2nd drawing week
Lecture: State variables: relation and table properties.
P-V-T surfaces, thermodynamics table lookup, phase diagrams.
Practice: State variable lookup practice.

7th week:
Lecture: Steam and gas processes.
Practice: Process derivation practice.

10th week:
Lecture: Mechanical structures of thermodynamics systems.
Practice: Mechanical design practice.

12th week:
Lecture: Data acquisition of thermodynamics system.
Practice: Data acquisition practice.

14th week:
Lecture: Diagnostic and troubleshooting of thermodynamics systems.
Practice: Diagnostic practices.

Requirements
A, for a signature:
Participation at practice, according to Rules and Regulations of University of Debrecen.
The correct solution of the project and submission before deadline.

B, for a grade:
The practical grade is the evaluation of the project.
Mechatronics Comprehensive Exam

Code: MK3MSZIR00RX17-EN
ECTS Credit Points: 0
Year, Semester: 3rd year, 2nd semester

Subject group “Differentiated Professional Subjects”

Modelling and Simulation Prototype Technologies I

Code: MK3MOD1R06R117-EN
ECTS Credit Points: 6
Evaluation: mid-semester grade
Year, Semester: 3rd year, 1st semester
Its prerequisite(s): Applied Automatization I
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+4

Topics:
Sizing with simulation: derivation of parameters based on time and energy optimum. Performance measurement of simulated system using cost functions. Development of stability regions, using parameter disturbances (tolerances) and disturbance distribution. Application of domain-specific simulation environments, solution of real-life challenges.
1. Application of building physics simulation software to model renewable energy utilization systems, and building management systems (BMS). (EnergyPlus form US DOE, NREL)
2. Complex, analog and digital electronics simulation system: static and transient analysis, parameter disturbance analysis, and effect of temperature change. (Multisim from National Instruments)
3. General purpose, multidomain, object oriented simulation environment. (Modelica and OpenModelica)
Literature:

Compulsory:

Schedule

<table>
<thead>
<tr>
<th>1st week Registration week</th>
</tr>
</thead>
</table>

2nd week:

Lecture: Multi-domain simulation with Bond Graphs: Mechanical, Electrical, Thermal and Flow process simulation.

Practice: Multi domain computer simulation practice.

4th week:

Practice: Numerical solution practice.

6th week:

Lecture: Simulated system performance measure with cost functions.

Practice: System performance measure practice.

8th week: 1st drawing week

9th week:

Lecture: Building physics simulation software introduction.

Practice: Building physics simulation practice.

11th week:

Lecture: Mixed, analogue and digital electrical signal simulation introduction.

Practice: Mixed electrical circuit simulation practice.

13th week:

3rd week:

Lecture: Derivation of differential equation from BondGraph. Linearization of differential equations around operational point.

Practice: System linearization practice.

5th week:

Lecture: Sizing with simulation: derivation of system parameters along time and energy constraints.

Practice: Sizing with simulation practice.

7th week:

Lecture: Derivation of operational stability range, against disturbance signals.

Practice: Operational stability practice.

10th week:

Lecture: Building simulation with renewable energy utilisation.

Practice: Renewable energy utilisation practice.

12th week:

Lecture: Steady state and transient analysis, parameter variable analysis, heat generation and cooling.

Practice: Multi analysis practice.

14th week:
Lecture: General purpose multi-domain system theory.
Practice: Multi-domain simulation practice.

Lecture: General purpose multi-domain system applications.
Practice: Multi-domain simulation practice.

15th week: 2nd drawing week

Requirements
A, for a signature:
Attendance at lectures is recommended, but not compulsory.
Participation at practice is compulsory. Students must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students can’t make up a practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is counted as an absence. In case of further absences, a medical certificate needs to be presented. Missed practices should be made up for at a later date, being discussed with the tutor. Students are required to bring the drawing tasks and drawing instruments to the course with them to each practice class. Active participation is evaluated by the teacher in every class. If a student’s behavior or conduct doesn’t meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.

During the semester there are two tests, students have to sit for the tests.

B, for grade:
The course ends in a mid-semester grade based on the test results.
The minimum requirement for both mid-term and end-term tests is 50%. Based on the score of the tests separately, the grade for the tests is given according to the following (score/grade): 0-39 = fail; 40-52 = pass (2); 53-63 = satisfactory (3); 64-71 = good (4); 72-80 = excellent (5).

If the score of the sum of the two tests is below 40, the student once can take a retake test of the whole semester material.

Modelling and Simulation Prototype Technologies II

Code: MK3MOD2R06R117-EN
ECTS Credit Points: 6
Evaluation: exam
Year, Semester: 3rd year, 2nd semester
Its prerequisite(s): Modelling and Simulation Prototype Technologies I
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+4
Topics:
Mechatronics, multi domain, prototype development, using simulation results. Theory and application of mechanical and electrical prototype development. Manufacturing of mechanical parts with additive and subtractive methods. Additional coating. Attachment of commercial mechanical parts: nuts and bolts, drive types, electrotechnical parts.
Printed Circuit Board (PCB) manufacturing with rapid prototyping technologies. Surface Mounted Technology (SMD) and Trough Hole Technology (THT). Heat transfer and cooling of electrical components. Matching and attachment of commercial electrical components: analog matching or digital bus connection.
Validation of electrical circuits with measurement: analysis with periodic and non-periodic excitation signals, measurement of harmonic distortion and transfer function.
CPU and FPGA based digital control and signal processing, using model-driven software development tools, such as LabView from National Instruments.
Realization of simulation results, achieved previous subject, with rapid prototyping technologies.

Literature:
Compulsory:

Schedule

<table>
<thead>
<tr>
<th>1st week</th>
<th>Registration week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd week:</td>
<td>Lecture: Multi-domain simulation development theory.</td>
</tr>
<tr>
<td></td>
<td>Practice: Prototype development practice.</td>
</tr>
<tr>
<td>4th week:</td>
<td>Lecture: Production of mechanical parts with subtractive and additive methods. Surface treatment methods.</td>
</tr>
<tr>
<td></td>
<td>Practice: Mechanical part manufacturing practice.</td>
</tr>
<tr>
<td>6th week:</td>
<td></td>
</tr>
<tr>
<td>3rd week:</td>
<td>Lecture: Electrical and mechanical prototype development theory.</td>
</tr>
<tr>
<td></td>
<td>Practice: Electrical and mechanical prototype manufacturing practice.</td>
</tr>
<tr>
<td>5th week:</td>
<td>Lecture: Design with commercial mechanical components: nuts and bolts, gears, and electromechanical components.</td>
</tr>
<tr>
<td></td>
<td>Practice: Design practice with commercial components.</td>
</tr>
<tr>
<td>7th week:</td>
<td></td>
</tr>
</tbody>
</table>
Practice: Printed circuit design practice.

8th week: 1st drawing week

9th week:
Practice: Electrical interfacing design and manufacturing practice.

10th week:
Lecture: Testing of electrical components and modules with periodic and non-periodic excitation signals.
Practice: Electrical modules testing practice.

11th week:
Lecture: Testing of electrical components and modules: distortion and transfer characteristics.
Practice: Electrical components testing practice.

12th week:
Lecture: Model driven software development tools, theory.
Practice: Model driven software development practice.

13th week:
Lecture: Digital control and signal processing with CPU.
Practice: Control and signal processing with CPU practice.

14th week:
Lecture: Digital control and signal processing with FPGA.
Practice: Control and signal processing with FPGA practice.

15th week: 2nd drawing week

Requirements
A, for a signature:
Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three occasions during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students can’t take part in any practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed practice classes must be made up for at a later date, being discussed with the tutor.
During the semester there are two tests: the mid-term test on the 8th week and the end-term test on the 15th week. Students must sit for the tests.

B, for a grade:
The course ends in an examination.
The minimum requirement of the mid-term, the end-term test and the teamwork is 50% separately. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following table:

The grade is given according to the following (score/grade): 0-49 % = fail (1); 50-62 % = pass (2); 63-75 % = satisfactory (3); 76-89 % = good (4); 90-100 % = excellent (5).

If the score of any test is below 50, the student once can take a retake test of the whole semester material.

An offered grade: It may be offered for the students if the average of the mid-term test, end-term tests and the teamwork is at least good (4). The offered grade is the average of them.

Robots and Robotics Technology

Code: MK3ROBR6R117-EN
ECTS Credit Points: 6
Evaluation: 6 exam
Year, Semester: 2nd year, 1st semester
Its prerequisite(s): Mechatronic Devices (Sensors, Actuators, Motors), Applied Automatization I
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+4

Topics:

Material handling, combined application of technological and material handling systems, synchronizing tasks. Introducing the concept of „Intelligent Space“: robots in human spaces. Robot simulation.
Schedule

1st week Registration week

2nd week:
- **Lecture:** Geometric and kinematic characteristics of robots. Denavit-Hartenberg parameters. Jacobi matrix.
- **Practice:** Accident prevention. Solving tasks using Denavit-Hartenberg parameters, Jacobi matrix.

3rd week:
- **Lecture:** Industry 4.0, role of robots, industrial manipulators in production processes. Concept of robots, structure of robots.
- **Practice:** Solving tasks using Denavit-Hartenberg parameters, Jacobi matrix.

4th week:
- **Lecture:** 6DOF robots: structural elements, drives.
- **Practice:** Robot control (6DOF or 4 DOF) – operator level.

5th week:
- **Lecture:** 6DOF robots: coordinate systems, installing coordinate systems.
- **Practice:** Robot control (6DOF or 4 DOF) – operator level.

6th week:
- **Lecture:** 6DOF robots: Point-to-point and continuous path control of robots. Point-to-point control.
- **Practice:** Robot control (6DOF or 4 DOF) – operator level.

7th week:
- **Lecture:** 6DOF robots: Singularity of robots.
- **Practice:** Robot control (6DOF or 4 DOF) – operator level.

8th week: 1st drawing week

9th week:
- **Lecture:** 4DOF (Scara) robots: structural elements, coordinate control, point-to-point control, continuous path control.
- **Practice:** Robot control (6DOF or 4 DOF) – operator level.

10th week:
- **Lecture:** Offline robot programming.
- **Practice:** Mid-term test (theoretical), Robot control – classified.

11th week:
- **Lecture:** Offline robot programming.
- **Practice:** Offline robot programming.

12th week:
- **Lecture:** “Intelligent Space”: robots in human spaces.
- **Practice:** Offline robot programming.

13th week:
- **Lecture:** Autonomous robots and their simulation.
- **Practice:** Robot simulation.

14th week:
- **Lecture:** Robot simulation.
- **Practice:** Robot simulation.

15th week: 2nd drawing week

16th week: 2nd drawing week
Requirements

A, for a signature:
Attendance at practical classes (see Rules and Regulations). Submitting homework assignments until the deadline. Passing the mid-term test.

B, for a grade:
Oral exam on the theoretical part.

Caxx Techniques

Code: MK3CAXXR06R117-EN
ECTS Credit Points: 6
Evaluation: mid-semester grade
Year, Semester: 3rd year, 2nd semester
Its prerequisite(s): Modelling and Simulation Prototype Technologies I
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 2+4

Topics:
CAXX technology theory summary: CAD, CAPP, CAM. Computer aided principles and technologies of machine production. Productivity and troubleshooting measurement with computer aided tools. Teamwork and cooperation with CAXX technologies.
CAXX technologies for Mechanical engineering practice: geometry design: creation of simple and complex surfaces and volumes. Modell extension with material, load and manufacturing properties. Connection of CAXX and CNC technologies. Practical examples: design and modelling of mechanism and drives.
Manufacturing with Rapid prototyping: material removal (cutting) and additive technologies. Rapid prototype manufacturing for mechanical and electrical engineering products.
Literature:

Compulsory:

Schedule

<table>
<thead>
<tr>
<th>1st week Registration week</th>
</tr>
</thead>
<tbody>
<tr>
<td>2nd week:</td>
</tr>
<tr>
<td>Lecture: Introduction to CAXX technologies theory</td>
</tr>
<tr>
<td>Practice: CAXX technology practice</td>
</tr>
</tbody>
</table>

| 3rd week: |
| Lecture: CAXX technology: effectiveness and productivity |
| Practice: Practice on CAXX technology: effectiveness and productivity |

| 4th week: |
| Lecture: CAXX technology: cooperation and teamwork. |
| Practice: Practice on CAXX technology: productivity and teamwork. |

| 5th week: |
| Lecture: CAXX technologies for Mechanical engineering practices: geometrical model. |
| Practice: CAXX technologies for Mechanical engineering practices: geometrical model design |

| 6th week: |
| Lecture: CAXX technologies for Mechanical engineering practices: material and load properties. |
| Practice: CAXX technologies for Mechanical engineering practices: material and load properties practice. |

| 7th week: |
| Lecture: CAXX technologies for Electrical engineering practice: cable design. |
| Practice: CAXX technologies for Electrical engineering practice: cable design practice. |

<table>
<thead>
<tr>
<th>8th week: 1st drawing week</th>
</tr>
</thead>
<tbody>
<tr>
<td>9th week:</td>
</tr>
<tr>
<td>Lecture: CAXX technologies for Electrical engineering practice: control cabinet design.</td>
</tr>
<tr>
<td>Practice: CAXX technologies for Electrical engineering practice: control cabinet design practice.</td>
</tr>
</tbody>
</table>

| 10th week: |
| Lecture: CAXX technologies for Electrical engineering practice: component packages and modules. |
| Practice: CAXX technologies for Electrical engineering practice: packages and modules design practice. |
11th week:
Lecture: CAXX technologies for Electrical engineering practice: printed circuit design.
Practice: CAXX technologies for Electrical engineering practice: printed circuit design practice.

12th week:
Lecture: Rapid prototyping: manufacturing technology theory.
Practice: Rapid prototyping: practice.

13th week:
Lecture: Rapid prototyping: manufacturing with cutting technology.
Practice: Rapid prototyping: cutting manufacturing practice.

14th week:
Lecture: Rapid prototyping: manufacturing with additive technology.
Practice: Rapid prototyping: additive manufacturing practice.

15th week: 2nd drawing week

Requirements

A, for a signature:
Attendance at **lectures** is recommended, but not compulsory.

Participation at **practice** is compulsory. Students must attend the practice classes and may not miss more than three times during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students can’t make up a practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is counted as an absence. In case of further absences, a medical certificate needs to be presented. Missed practices should be made up for at a later date, being discussed with the tutor. Students are required to bring the drawing tasks and drawing instruments to the course with them to each practice class. Active participation is evaluated by the teacher in every class. If a student’s behavior or conduct doesn’t meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.

During the semester there are two tests, students have to sit for the tests.

B, for grade:
The course ends in a **mid-semester grade** based on the test results.

The minimum requirement for both mid-term and end-term tests is 50%. Based on the score of the tests separately, the grade for the tests is given according to the following (score/grade): 0-39 = fail; 40-52 = pass (2); 53-63 = satisfactory (3); 64-71 = good (4); 72-80 = excellent (5).

If the score of the sum of the two tests is below 40, the student once can take a retake test of the whole semester material.
Cyber-physical Systems

Code: MK3KIBRR6R117-EN
ECTS Credit Points: 6
Evaluation: mid-semester grade
Year, Semester: 3rd year, 2nd semester
Its prerequisite(s): Modelling and Simulation Prototype Technologies I
Further courses are built on it: Yes/No
Number of teaching hours/week (lecture + practice): 0+4

Topics:
The industry’s 4.0 manufacturing technology trends, its upgrades are inseparable from the
total transformation of industrial proceedings. The new approach to manufacturing and
some aspects of it worldwide is a paradigm with different names (industrial internet,
industry 4.0, cyber physical manufacturing system) one of its building blocks contains the
practical teaching of the module. One of the logical explanations can be found in the BMBF
(Bundesministerium fur Bildung und Forschung – german alliance educational and
research minister) obtaining finance section: „The flexibility of the cyber physical systems
increases the usage of manufacturing systems (CPPS). This makes it possible for machines
and sites to optimize themselves and reconfigure, their behaviour change in regards to
the changing orders and manufacturing conditions. The interrelationship between the real
and the digital world, in the modern manufacturing sites it creates the foundation for the
„internet of things”. In the centre of the systems there is a capability, to feel all incoming
information, and conduct recognition out of this, and according to this they change their
behaviour, and store the knowledge gained by experience. The intelligent manufacturing
systems and processes, and the goal oriented engineering plans, methods and tools will
become the most important factors of the shared and connected manufacturing winery,
for the successful creation in the future „intelligent manufacturing sites,”. The intelligent
manufacturing sites original conception, the internet of things. This phrase was created in
1999 to put everyday items in a web and the web operation RFID and sensory technology
together. The expression ‘cyber physical systems’ (CPS) was first written down in 2006 as
unified actualization of minimal requirements.

Literature:
Recommended:
- Lee, Edward A. and Seshia, Sanjit A.: Introduction to Embedded Systems, A Cyber-
- Lee, Edward A. "CPS foundations." Proceedings of the 47th Design Automation
Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st week</td>
<td>Registration week</td>
</tr>
<tr>
<td>2nd week</td>
<td>Practice: Creation of virtual production with discrete event-driven production & logistics. (with the most up to date software, 2017. TECNOMATIX/PLANT SIMULATION.</td>
</tr>
<tr>
<td>3rd week</td>
<td>Practice: Creation of virtual production with discrete event-driven production & logistics. (with the most up to date software, 2017. TECNOMATIX/PLANT SIMULATION.</td>
</tr>
<tr>
<td>4th week</td>
<td>Practice: Creation of virtual production with discrete event-driven production & logistics. (with the most up to date software, 2017. TECNOMATIX/PLANT SIMULATION.</td>
</tr>
<tr>
<td>5th week</td>
<td>Practice: Creation of virtual production with discrete event-driven production & logistics. (with the most up to date software, 2017. TECNOMATIX/PLANT SIMULATION.</td>
</tr>
<tr>
<td>6th week</td>
<td>Practice: Creation of virtual production with discrete event-driven production & logistics. (with the most up to date software, 2017. TECNOMATIX/PLANT SIMULATION.</td>
</tr>
<tr>
<td>7th week</td>
<td>Practice: Creation of virtual production with discrete event-driven production & logistics. (with the most up to date software, 2017. TECNOMATIX/PLANT SIMULATION.</td>
</tr>
<tr>
<td>8th week</td>
<td>1st drawing week</td>
</tr>
<tr>
<td>9th week</td>
<td>Practice: Project selection & individual consultation.</td>
</tr>
<tr>
<td>10th week</td>
<td>Practice: Individual Consultation.</td>
</tr>
<tr>
<td>11th week</td>
<td>Practice: Individual Consultation.</td>
</tr>
<tr>
<td>12th week</td>
<td>Practice: Individual Consultation.</td>
</tr>
<tr>
<td>13th week</td>
<td>Practice: Individual Consultation.</td>
</tr>
<tr>
<td>14th week</td>
<td>Practice: Project submission & presentation.</td>
</tr>
<tr>
<td>15th week</td>
<td>2nd drawing week</td>
</tr>
</tbody>
</table>
Requirements

A, for a signature:
Participation on practice, according to Rules and Regulations of University of Debrecen. The correct solution of the project and submission before deadline.

B, for a grade:
The practical grade is the evaluation of the project.

Project of Mechatronics
Individual Project Work
DIPLOMA

Within 30 days of the successful final exam the diploma is issued and given out by the Faculty at the graduand’s special request. Otherwise, the diploma will be awarded to him/her at the graduation ceremony of the Faculty.

The diploma is an official document decorated with the coat of arms of Hungary which verifies the successful completion of studies in the Mechatronics Engineering undergraduate program. The diploma contains the following data: name of HEI (higher education institution); institutional identification number; serial number of diploma; name of diploma holder; date and place of his/her birth; level of qualification; training program; specialization; mode of attendance; place, day, month and year issued. Furthermore, it has to contain the dean’s (or vice-dean’s) original signature and the seal of HEI. It has to contain the dean’s (in case of being prevented from attending the vice-dean for educational affairs) original signature and the imprint of the official stamp of the tertiary institute.

At the graduand’s special request a certificate on the completion of studies is issued. The document does not contain any reference to qualification, it merely proves that the candidate has taken a successful final exam. The Faculty keeps a record of the certificates issued.

Calculation of a diploma grade according to this formula:
Grade=0.3×B+0.2×C+0.5×A, where
A: Average of comprehensive exams A=0.3 x mathematics comp. exam+0.7 x mechatronics comp.exam
B: Average of the grades of the subjects of the state exam
C: Grade for defending thesis

On the basis of the calculated average grade the classification of the award:

With honours 4,81 – 5,00
Excellent 4,51 – 4,80
Good 3,51 – 4,50
Satisfactory 2,51 – 3,50
Pass 2,00 – 2,50

Award with Distinction

An award with Distinction is permitted where a student obtained grade 5 in all subjects of the state exam. The average of thesis grade, his/her exam grades and mid-semester grades during his/her studies is at least 4.00. Moreover, he/she is not permitted to have a grade worse than grade 3 during his/her studies.
Model Curriculum of Mechatronics Engineering BSc – Specialization in Mechatronics Systems

The curriculum of the program is available in Excel format on the webpage of the Faculty of Engineering [here](https://eng.unideb.hu/en/node/195).

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Subject group</th>
<th>Subject name</th>
<th>Subject code</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Mathematics I</td>
<td>MK3MAT1A04RX17-EN</td>
<td>8 4 m 6</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Mathematics II</td>
<td>MK3MAT2A04RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Mathematics Comprehensive Exam</td>
<td>MK3MAT400RX17-EN</td>
<td>0 0 4 5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Mathematics III</td>
<td>MK3MAT3A04RX17-EN</td>
<td>2 2 m 4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Engineering Physics</td>
<td>MK3FUG1A04RX17-EN</td>
<td>2 2 m 4</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Computer-Aided Modelling</td>
<td>MK3INFCA04RX17-EN</td>
<td>0 4 m 4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Electromagnetism</td>
<td>MK3INFCA04RX17-EN</td>
<td>0 4 m 4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Dynamics and Vibration</td>
<td>MK3KIBRR06R117-EN</td>
<td>2 2 m 4</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Dynamics and Vibration</td>
<td>MK3KIBRR06R117-EN</td>
<td>2 2 m 4</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Inertial Navigation</td>
<td>MK3INFCA04RX17-EN</td>
<td>1 2 m 4</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Law and Ethics</td>
<td>MK3INFCA04RX17-EN</td>
<td>2 0 m 4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Economics for Engineering</td>
<td>MK3INZ04RX17-EN</td>
<td>1 2 m 4</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Demometrics and Econometric Processes of Enterprises</td>
<td>MK3INZ04RX17-EN</td>
<td>1 2 m 4</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Quality and Technical Management</td>
<td>MK3INZ04RX17-EN</td>
<td>1 2 m 4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Mathematics III</td>
<td>MK3MAT1A08RX17-EN</td>
<td>0 0 4 5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Electrotechnics</td>
<td>MK3MAT2A04RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Electronics</td>
<td>MK3MAT3A04RX17-EN</td>
<td>2 2 m 4</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Mechatronics (Sensors, Actuators, Motion)</td>
<td>MK3MAT02A04RX17-EN</td>
<td>2 2 m 4</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Mechanical Machines and Machine Elements</td>
<td>MK3MAT1A04RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Manufacturing Technologies</td>
<td>MK3MAT2A04RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Mechatronics (Sensors, Actuators, Motion)</td>
<td>MK3MAT2A04RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Manufacturing Technologies</td>
<td>MK3MAT2A04RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Measurement and Data Acquisition</td>
<td>MK3MAT2A04RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Environmental, safety and facility, logics (class of lines)</td>
<td>MK3MAT2A04RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Applied Automation I</td>
<td>MK3MAT3A04RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Applied Automation II</td>
<td>MK3MAT3A04RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Pneumatics and Hydraulics</td>
<td>MK3MAT3A04RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Electronic Mechatronics and Electrohydraulics</td>
<td>MK3MAT3A04RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Electrical Machines and Drives</td>
<td>MK3MAT3A04RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Thermodynamics</td>
<td>MK3MAT3A04RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Mechatronics Comprehensive Exam</td>
<td>MK3MAT3A04RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Modelling and Simulation Prototype Technologies I</td>
<td>MK3MAT400RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Modelling and Simulation Prototype Technologies II</td>
<td>MK3MAT400RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Robots and Robotics Technology</td>
<td>MK3MAT400RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Measurement and Data Acquisition</td>
<td>MK3MAT400RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Computer-Aided Modelling</td>
<td>MK3MAT400RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Project of Mechatronics</td>
<td>MK3MAT400RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Thesis</td>
<td>MK3MAT400RX17-EN</td>
<td>2 4 m 6</td>
<td></td>
</tr>
</tbody>
</table>

Total: 124 credits

Credits: 124

Courses: 124

Prerequisites:
- **L:** Lecture, **P:** Practice, **E:** Evaluation, **C:** Credits
- **Ex:** Exam, **m:** mid-semester grade, **F:** Final exam (comprehensive exam), **S:** Signature