University of Debrecen Faculty of Engineering

Professional Pilot BSc Program

2023

TABLE OF CONTENTS

DEAN'S WELCOME	3
HISTORY OF THE UNIVERSITY	4
ADMINISTRATION UNITS FOR INTERNATIONAL PROGRAMMES	6
DEPARTMENTS OF FACULTY OF ENGINEERING	9
ACADEMIC CALENDAR	22
THE PROFESSIONAL PILOT UNDERGRADUATE PROGRAM	25
Information about the Program	25
Program Specifications	
Credit System	
Guideline (Lisf of Subjects/Semesters)	
Work and Fire Safety Course	
Internship	
Modules	
Training Termination	
Physical Education	
Optional Courses	
Pre-degree Certification	
Thesis	
Final exam	35
SPECIAL INFORMATION RELATED TO THE ATO COURSES	
Course Descriptions for PROFESSIONAL PILOT BSc	
1st semester	
2nd semester	60
Flight Training	155
Diploma	
Model Curriculum of PROFESSIONAL PILOT BSC	

DEAN'S WELCOME

Welcome to UD's Faculty of Engineering!

The Faculty of Engineering of the University of Debrecen has become an outstanding centre of education and research in the Eastern Hungarian region. Following the footsteps of our predecessors, the academic and administrative staff of the Faculty work hand in hand to make our training programmes and researches meet both national and international standards.

The Faculty of Engineering is one of Hungary's most significant institutions of highereducation, and its 3000 students make it a dominant faculty of the University of Debrecen which - having the most international students, offering the most academic programmes among Hungarian universities and having been classified as a research university, the highest of qualifications - is officially listed among the best universities in the country.

We welcome the most outstanding and inquisitive students of the region with an enthusiastic and professional team of academics and researchers, and a set of laboratories unique in the country. We consciously aspire to develop the quality of education and research further, based on a close cooperation between the Faculty and the industry. Our students enter many prestigious competitions and they are becoming increasingly successful and acclaimed, while our instructors are working on a growing number of national and international projects of basic and applied research.

The Faculty bridges the gap between theory and practice and provides a high-quality theoretical background merged into practice-oriented training based on industrial relations. We do our best to maintain the high prestige of the engineering diplomas awarded by the University of Debrecen and to make sure that the knowledge and achievements of students who graduate from our Faculty continue to be recognised in the labour market.

All things considered, you are kindly advised to read this bulletin which hopefully reflects our endeavours appropriately and provides all the information you need to know about your chosen training programme. We are looking forward to supporting the personal and professional growth of our future engineers.

With the best of wishes for the years to come,

Géza Husi Dean

HISTORY OF THE UNIVERSITY

The history of Debrecen's higher education dates back to the 16th century. The Calvinist Reformed College, established in 1538, played a central role in education, teaching in the native language and spreading Hungarian culture in the region as well as in the whole country. The College was a sound base for the Hungarian Royal University, founded in 1912. Apart from the three academic faculties (arts, law, theology) a new faculty, the Faculty of Medicine was established, and the University soon became one of the regional citadels of Hungarian higher education. Today, University of Debrecen is classified as "University of National Excellence" and offers the highest number of academic programs in the country, therefore it is considered to be one of the best universities in Hungary. Its reputation is the result of its quality training, research activities and the numerous training programs in different fields of science and engineering in English. With 14 faculties and a student body of almost 30.000, out of which about 3700 are international students, the University of Debrecen is one of the largest higher education institutions in Hungary.

The history of the Faculty of Engineering dates back to 1965, when the Technical College was established. In 1972 it was renamed Ybl Miklós Polytechnic and in 1995 it became part of Kossuth Lajos University. In 2000 the Faculty of Engineering became part of the integrated University of Debrecen.

In 2005 the Bologna System was introduced which supports the competitiveness of qualifications received at the University of Debrecen against universities all over Europe.

The Faculty of Engineering is practice-oriented and develops skills required for the current needs of the national and international labour market. The teaching staff is involved in numerous domestic and international research and design projects. The recently-opened new building wing with its ultra-modern design hosts several lecture halls, seminar rooms and laboratories equipped with the latest technology. Our students are provided with practical knowledge, training and field practice from numerous prestigious domestic and multi-national industry partners. The internship periods are excellent opportunities for students to experience how theory is put into practice at the most renowned industry representatives and become more successful in the labour market of this highly competitive sector. Students learn how to work in the working environment of multi-national companies and adapt to challenges easily. After graduation they will be able to work at a strategic decision-making level, giving priority to efficiency and engineering ethics.

The Faculty of Engineering offers a great variety of BSc, MSc courses and post-graduate training courses tailored to the needs of the rapidly changing world of engineering and focusing on European and international trends. In 2011 the Faculty of Engineering launched engineering trainings in English. In order to optimize the quality of training, the Faculty continuously strives to expand the number of industrial and educational partners at home and abroad.

The Faculty of Engineering has been a pioneer in the introduction of Quality Management System at faculty level to measure and evaluate the efficiency of its education and teaching staff in order to improve the quality of education and training from the feedback received.

The Faculty of Engineering has a vivid student life. There is a film club waiting for movie buffs and the door of the Faculty library is always open. The library is not only the host to the latest technical books, exhibitions and tea afternoons with invited speakers, but students can also purchase theatre and concert tickets from the librarians. The Borsos József Dormitory is also a hub of activities for students.

The increasing number of international students brings cultural and ethnic diversity to the faculty.

Our aim is to aid students to become efficient members of the labour market and enrich the world of engineering in Hungary and abroad with their knowledge and expertise.

ADMINISTRATION UNITS FOR INTERNATIONAL PROGRAMMES

COORDINATING CENTER FOR INTERNATIONAL EDUCATION

98, Nagyerdei körút, Debrecen 4032 Telephone: +36-52-512-900/62796 E-mail: <u>info@edu.unideb.hu</u>

Program Director (Non-Medical Programmes)	László Kozma PhD
Admission Officer (for fee paying students)	Ms. Ibolya Kun
	Ms. Kornélia Szabó-Kulcsár
Admission Officer (for scholarship students)	Ms. Lilla Almási-Fónai
	Ms. Annamária Rácz
Administrative Assistant	Ádám Losonczi
(for fee-paying students)	Norbert Balogh
Administrative Assistant	Ms. Nóra Dede-Kiss
(for scholarship students)	

The Coordinating Centre for International Education supports the international degree programmes of the University of Debrecen in giving new students information on admission and entrance exam. It has tasks in promoting and is in charge of tasks like enrolment, study contracts, modifying student status or degree programme, activating student status, modifying students' personal data, requesting and updating student cards, providing certificates for the Immigration Office (for residence permit), issuing student status letters and certificates on credit recognition, concluding health insurance contract and providing Health Insurance Card, helping students with visa process application.

INTERNATIONAL OFFICE AT THE FACULTY OF ENGINEERING

2-4, Ótemető utca, Debrecen H-4028 Telephone: +36-52-415-155/78709

Head of International Office	Zsolt Tiba PhD habil.
room 122	tiba@eng.unideb.hu
International Relations Officer	Márton Lévai
room 123	levai.marton@eng.unideb.hu
International Relations Officer	Ms. Zita Popovicsné Szilágyi
room 124	szilagyizita@eng.unideb.hu
International Relations Officer	Ms. Zsuzsa Flóra Péter
room 123	peter.zsuzsa.flora@eng.unideb.hu

The International Office has been functioning since 2014 in order to ensure the smooth running of the international degree courses. The office is responsible for student administration (full-time students, full-time transfer students, visiting/Erasmus students), providing certificates for students, considering and accepting requests, solving problems related to course registration, giving information about internship, final exam, thesis, etc.

DEAN'S OFFICE

Faculty of Engineering 2-4, Ótemető utca, Debrecen H-4028

Dean:	Géza Husi PhD, habil., Full Professor
room 109	husigeza@eng.unideb.hu

Vice-Dean for Educational Affairs: room 120 Ms. Judit T. Kiss PhD, Associate Professor tkiss@eng.unideb.hu

Vice-Dean for Scientific Affairs: room 120 Imre Kocsis PhD habil, Full Professor kocsisi@eng.unideb.hu

Head of Directory Office: room 109 Ms. Noémi Siposné Bíró JD bironoemi@unideb.hu

DEPARTMENTS OF FACULTY OF ENGINEERING

Department of Air- and Road Vehicles Department of Architecture Department of Basic Technical Studies Department of Building Services and Building Engineering Department of Civil Engineering Department of Engineering Management and Enterprise Department of Environmental Engineering Department of Mechanical Engineering Department of Mechatronics Off-Site Department of Aviation Engineering

DEPARTMENT OF AIR- AND ROAD VEHICLES

2-4 Ótemető utca, Debrecen, H-4028, room 120, Tel: +36-52-512-900 / 777				
name, position	e-mail, room number			
Géza Husi PhD, habil. Full Professor, Head of Department	<u>husigeza@eng.unideb.hu</u> room 109			
Ms. Piroska Gyöngyi Ailer PhD, College Professor, Vice Rector	ailer.piroska@unideb.hu room 121			
Zsolt Tiba PhD habil., College Professor	<u>tiba@eng.unideb.hu</u> room 303			
József Menyhárt PhD, Associate Professor	jozsef.menyhart@eng.unideb.hu room 324/6			
Zsolt Békési, Assistant Lecturer	<u>zsolt.bekesi@eng.unideb.hu</u> room 324/6			
Timotei István Erdei, Assistant Lecturer, PhD student	timoteierdei@eng.unideb.hu Building B, Robotics Laboratory			
József Kertész, Assistant Lecturer, PhD student	kertesz.jozsef@eng.unideb.hu room 301			
Ms. Krisztina Tóth JD, Administrative Assistant	toth.krisztina@eng.unideb.hu room 120			

DEPARTMENT OF ARCHITECTURE

2-4, Ótemető utca, Debrecen, H-4028, room 409, Tel: +36-52-512-900 / 78704

name, position	e-mail, room number
Tamás Szentirmai DLA, Associate Professor, Head of Department	<u>szentirmai.tamas@gmail.com</u> room 409
Péter Kovács DLA, Associate Professor	<u>kovacs.pe@chello.hu</u> room 409
Gábor Zombor DLA, Associate College Professor	<u>zombor@monomorph.hu</u> room 409
Miklós János Boros DLA, Senior Lecturer	boros.miklos.janos@gmail.com room 409
Ms. Edit Huszthy DLA, Senior Lecturer	<u>huszthyedit@gmail.com</u> room 409
Ms. Dóra Eszter Molnár, Senior Lecturer	molnar.dora.e@gmail.com room 409
Zsolt Erdőhegyi, Master Instructor	<u>erdohegyi@gmail.com</u> room 409
Péter Müllner, Senior Lecturer	<u>mullner.peter@eng.unideb.hu</u> room 409
Zoltán Major, Senior Lecturer	<u>m.zoltan@eng.unideb.hu</u> room 409

Ms. Réka Aradi, Master Instructor	reka0416@gmail.com room 409
Ferenc Keller, Master Instructor	<u>kellerfeco@gmail.com</u> room 409
Dénes Nagy, Departmental Engineer	<u>nagy.denes@eng.unideb.hu</u> room 409
Ms. Bettina Lékó, Administrative Assistant	<u>leko.bettina@eng.unideb.hu</u> room 409

DEPARTMENT OF BASIC TECHNICAL STUDIES

2-4 Ótemető utca, Debrecen, H-4028, ground floor 6, Tel: +36-52-512-900 / 777		
name, position	e-mail address, room number	
Imre Kocsis PhD habil, Full Professor,	<u>kocsisi@eng.unideb.hu</u>	
Head of Department	ground floor 2	
Gusztáv Áron Szíki PhD, College Professor	<u>szikig@eng.unideb.hu</u> ground floor 7	
Balázs Kulcsár PhD, Associate Professor	<u>kulcsarb@eng.unideb.hu</u> ground floor 4	
Ms. Rita Nagyné Kondor PhD habil,	<u>rita@eng.unideb.hu</u>	
Associate Professor	ground floor 7	
Csaba Gábor Kézi PhD, Associate	<u>kezicsaba@science.unideb.hu</u>	
Professor	ground floor 6	
Ms. Adrienn Varga PhD, Associate	<u>vargaa@eng.unideb.hu</u>	
Professor	ground floor 5	

Ms. Gyöngyi Bodzásné Szanyi PhD, Senior Lecturer Ms. Boglárka Burján-Mosoni, Senior Lecturer	szanyi.gyongyi@science.unideb.hu ground floor 6 burjan-mosoni.boglarka@eng.unideb.hu ground floor 3/B	
Ms. Ildikó Papp PhD, Senior Lecturer	papp.ildiko@inf.unideb.hu ground floor 3/B	
Ms. Éva Csernusné Ádámkó PhD, Senior Lecturer	adamko.eva@eng.unideb.hu ground floor 7	
Ms. Erika Perge PhD, Senior Lecturer	perge@eng.unideb.hu ground floor 6	
Attila Vámosi, Master Instructor	<u>vamosi.attila@eng.unideb.hu</u> ground floor 5	
Ms. Dóra Sipos, Assistant Lecturer	dorasipos@eng.unideb.hu ground floor 3/B	
Attila Szántó, Assistant Lecturer	<u>szanto.attila@eng.unideb.hu</u> ground floor 7	
Ms. Nóra Tóth, Administrative Assistant	<u>tothnora@eng.unideb.hu</u> Room 121.	

DEPARTMENT OF BUILDING SERVICES AND BUILDING ENGINEERING

Ótemető utca 2-4., Debrecen, H-4028, room 121, Tel: +36-52-512-900 / 77770

name, position				e-mail, room number
Imre Csáky Deputy Head			Professor,	<u>imrecsaky@eng.unideb.hu</u> room 302/c

Ferenc Kalmár PhD, habil., DSc, Full Professor	fkalmar@en
Professor	room 121/3
Ákos Lakatos PhD, habil, Full Professor,	alakatos@er
Head of Department	room 302/a
Ms. Tünde Klára Kalmár PhD, Associate	<u>kalmar_tk@</u>
Professor	room 324/5
Zoltán Verbai PhD, Senior Lecturer	verbai@eng
	room 324/4
Ferenc Szodrai PhD, Associate Professor	szodrai@en
	room 324/8
Béla Bodó, Master Instructor	bela.bodo@
	room 324/4
Sándor Hámori, Master Instructor	sandor.ham
	room 324/8
Gábor L. Szabó PhD, Senior Lecturer	l.szabo.gabo
	room 324/2
Attila Kostyák, Assistant Lecturer	kostyak.attil
	room 324/3
Szabalas Szakaras Assistant Lasturas	szekeres@e
Szabolcs Szekeres, Assistant Lecturer	<u>320KC1C3@C</u>

ng.unideb.hu 324.7

eng.unideb.hu

eng.unideb.hu 5

g.unideb.hu

ng.unideb.hu 3

eng.unideb.hu 1

nori@eng.unideb.hu 3

or@eng.unideb.hu

ila@eng.unideb.hu 3

eng.unideb.hu room 324/2

Ferenc Kostyák, Master Instructor,			kostyak.ferenc@eng.unideb.hu	
part-time			room 324/3	
Ms.	Krisztina	Bereczki	Administrative	<u>bkriszti@eng.unideb.hu</u>
Assis	tant			room 302

DEPARTMENT OF CIVIL ENGINEERING

2-4 Ótemető utca, Debrecen, H-4028, room 209, Tel: +36-52-512-900 / 78701

name, position	e-mail, room number
Imre Kovács PhD, College Professor, Head of Department	<u>dr.kovacs.imre@eng.unideb.hu</u> room 212/e
György Csomós PhD, College Professor	<u>csomos@eng.unideb.hu</u> room 209/d
János Major PhD habil., College Professor	<u>drmajorjanos@eng.unideb.hu</u> room 212/c
Ms. Kinga Nehme PhD, Associate Professor	<u>knehme@eng.unideb.hu</u> room 209/a
Ms. Herta Czédli PhD, Associate Professor	<u>herta.czedli@eng.unideb.hu</u> room 209/e
Ms. Gabriella Hancz PhD, Associate Professor	<u>hgabi@eng.unideb.hu</u> room 209/a
Ms. Éva Lovra PhD, Senior Lecturer	<u>lovra.eva@eng.unideb.hu</u> room 209/b
Zoltán Bereczki PhD, Senior Lecturer	<u>bereczki.zoltan@eng.unideb.hu</u> room 209/b
László Radnay PhD, Associate College Professor	<u>laszlo.radnay@eng.unideb.hu</u> room 209/c

Zsolt Varga PhD, Associate College Professor	vzs@en room 11
Ms. Krisztina Kozmáné Szirtesi, Assistant Lecturer	<u>kszk@ei</u> room 21
Ms. Beáta Pataki, Assistant Lecturer	<u>pataki.b</u> 209/e
Ádám Ungvárai, Assistant Lecturer	<u>ungvara</u> room 21
János Bíró, Master Instructor	<u>biroj@e</u> room 11
Zsolt Martonosi, Master Instructor	martono room 21
Miklós Juhász, Master Instructor	juhasz.n room 21
László Tarcsai, Master Instructor	<u>tarcsai@</u> room 21
József Kovács, Departmental Engineer	j <u>.kovacs</u> room 20
Zsolt Vadai, Master Instructor	vadai@e

Titusz Igaz, Lecturer

Péter Lugosi, Master Instructor

vzs@eng.unideb.hu

room 119, Lab

<u>kszk@eng.unideb.hu</u> room 212/b

pataki.bea@eng.unideb.hu 209/e

ungvarai@eng.unideb.hu room 212/a

piroj@eng.unideb.hu room 119, Lab

martonosizs@eng.unideb.hu room 212/b

juhasz.miklos@eng.unideb.hu room 212/c

tarcsai@eng.unideb.hu room 212/a

j.kovacs@eng.unideb.hu room 209/b

vadai@eng.unideb.hu room 209/e

igaz.titusz@gmail.com room 212/b

lugosi.peter@eng.unideb.hu room 209/e Ms., Mónika Tóthné Csákó, Administrative Assistant csmoni@eng.unideb.hu

room 212

DEPARTMENT OF ENGINEERING MANAGEMENT AND ENTERPRISE

2-4 Ótemető utca, Debrecen, H-4028, room 206, Tel: +36-52-512-900 / 77766

name, position	e-mail, room number
Ms. Judit T. Kiss PhD, Associate Professor, Head of Department	<u>tkiss@eng.unideb.hu</u> room 205/b
Ms. Edit Szűcs PhD habil, Full Professor	<u>edit@eng.unideb.hu</u> room 206
István Budai PhD, Associate Professor	<u>budai.istvan@eng.unideb.hu</u> room 414
Ms. Andrea Emese Matkó PhD habil, Associate Professor	andim@eng.unideb.hu room 202/d
Domicián Máté PhD habil, Associate Professor	<u>mate.domician@eng.unideb.hu</u> room 202/d
László Török PhD, Associate Professor	<u>dr.torok.laszlo@eng.unideb.hu</u> room 202/a
Ms. Éva Diószeginé Zentay, Master Instructor	<u>zentayevi@eng.unideb.hu</u> room 202/c
Ms. Tünde Jenei PhD, Master Instructor	<u>jeneit@eng.unideb.hu</u> room 202/b
Ms. Anita Mikó-Kis, Master Instructor	<u>drkisanita@eng.unideb.hu</u> room 202/a

Csanád Sipos, Master Instructor

Emil Varga, Master Instructor

Zsolt Buri, Assistant Lecturer

Róbert Sztányi, Assistant Lecturer

Miklós Fazekas, Lecturer

Gyula Mikula, Lecturer

Ms Viktória Mannheim, Lecturer

Ms. Judit Bak Administrative Assistant

Ms. Tímea Török Administrative Assistant sipos.csanad@eng.unideb.hu
room 202/f

emil@eng.unideb.hu room 202/g

Buri.zsolt@eng.unideb.hu room 202/a

sztanyir@eng.unideb.hu
room 202/g

miklos.fazekas.87@gmail.com room 206

mikula.gyula@gmail.com room 202/f

Viktoria.mannheim@uni-miskolc.hu

bakjudit@eng.unideb.hu room 204

torok.timea@eng.unideb.hu room 204

DEPARTMENT OF ENVIRONMENTAL ENGINEERING

2-4 Ótemető utca, Debrecen, H-4028, room 312, Tel: +36-52-512-900 / 77827

name, position	e-mail, room number
Dénes Kocsis PhD, Associate Professor,	<u>kocsis.denes@eng.unideb.hu</u>
Head of Department	room 312
Ms. Ildikó Bodnár PhD, College Professor	<u>bodnari@eng.unideb.hu</u> room 309
János Szendrei PhD, Associate Professor	<u>szendrei.janos@eng.unideb.hu</u> room 313
Sándor Fórián, Master Instructor	forian@eng.unideb.hu room 313
Gábor Bellér PhD, Associate Professor	<u>beller.gabor@eng.unideb.hu</u> room 310
Ms. Andrea Izbékiné Szabolcsik, Assistant	<u>szabolcsikandi@eng.unideb.hu</u>
Lecturer	room 310
Ms. Alexandra Truzsi PhD, Assistant	<u>truzsi.alexandra@eng.unideb.hu</u>
Lecturer	room 310
Lajos Gulyás PhD, Emeritus College	lgulyas@eng.unideb.hu
Professor, Lecturer	room 310
Ms. Andrea Halászné Ercsei, Administrative	<u>halaszneandi@eng.unideb.hu</u>
Assistant	room 312

DEPARTMENT OF MECHANICAL ENGINEERING

2-4 Ótemető utca, Debrecen, H-4028, room 304, Tel: +36-52-512-900 / 77776

name, position	e-mail, room number
Tamás Mankovits PhD, Associate Professor, Head of Department	<u>tamas.mankovits@eng.unideb.hu</u> room 304
Sándor Bodzás PhD, Associate Professor, Deputy Head of Department	<u>bodzassandor@eng.unideb.hu</u> room 308
Sándor Hajdu PhD, Associate Professor, Deputy Head of Department	<u>hajdusandor@eng.unideb.hu</u> room 307
Levente Czégé PhD, Associate Professor	<u>czege.levente@eng.unideb.hu</u> room 307
György Juhász PhD, Associate Professor	juhasz@eng.unideb.hu room 306
László Molnár PhD, Associate Professor	molnar.laszlo@eng.unideb.hu room 301
Sándor Pálinkás PhD, Associate College Professor	<u>palinkassandor@eng.unideb.hu</u> room 308
István Árpád PhD, Senior Lecturer	<u>arpad.istvan@eng.unideb.hu</u> room 306
Ms Szilvia Barkóczyné Gyöngyösi PhD, Senior Lecturer	<u>szilvia.gyongyosi@eng.unideb.hu</u> room 308
Krisztián Deák PhD, Senior Lecturer	<u>deak.krisztian@eng.unideb.hu</u> room 305
Czomba Sándor PhD, Senior Lecturer	<u>sandor.czomba@eng.unideb.hu</u> room 307
Dávid Huri PhD, Assistant Lecturer	<u>huri.david@eng.unideb.hu</u> room 324/6
Gábor Balogh, Master Instructor	<u>balogh.gabor@eng.unideb.hu</u> room 305

Tibor Pálfi, Master Instructor	tibor.palfi@eng.unideb
	room 301
Sándor Andráskó, Master Instructor	sandor.andrasko@eng.unideb.hu
	room U.0.16
Márton Lévai, Engineer Instructor	levai@eng.unideb.hu
	room U.0.16
Dániel Nemes, Department Engineer, PhD	nemes.daniel@eng.unideb.hu
Student	room U.0.22
András Gábora, Department Engineer	andrasgabora@eng.unideb.hu
	room U.0.16
Zoltán Gergő Géresi, Department Engineer	zoltan.geresi@eng.unideb.hu
	room U.0.16
Ms. Lilla Csonkáné Dóró, Administrative	lilla.csonkane@eng.unideb.hu
Assistant	room 304
Ms. Szandra Kalmárné Sitku, Administrative	szandra.sitku@eng.unideb.hu
Assistant	room 304

DEPARTMENT OF MECHATRONICS

2-4 Ótemető utca, Debrecen, H-4028, room 120, Tel: +36-52-512-900 / 77742

name, position	e-mail, room number
Prof. Géza Husi PhD Full professor, Dean, Head of Department	husigeza@eng.unideb.hu
Kornél Sarvajcz, Assistant Lecturer, PhD student	<u>sarvajcz@eng.unideb.hu</u> Building B, room I/1
Prof. Péter Korondi PhD, Full Professor	<u>korondi.peter@eng.unideb.hu</u> Building B, room 6
István Balajti PhD, Associate Professor	<u>balajti.istvan@eng.unideb.hu</u> Building B, room 5

Husam Abdulkareem Neamah Almusawi, PhD, Senior Lecturer	<u>husam@eng.unideb.hu</u> Building B, room I/5
Gyula Attila Darai, Departmental Engineer	<u>darai@eng.unideb.hu</u> Building B, room 7
Gyula Korsoveczki, Assistant Lecturer, PhD student	<u>korsoveczki.gyula@eng.unideb.hu</u> Building B, Robotics Laboratory
Róbert Mikuska, Departmental Engineer, PhD student	<u>mikuska.robert@eng.unideb.hu</u> Building B, I/4
Szabolcs Diós, Departmental Engineer	<u>dios.szabolcs@eng.unideb.hu</u> Building B, room I/5
László Keczán, Departmental Engineer	<u>keczan.laszlo@eng.unideb.hu</u> Building B, room I/3
Zenan Guo, PhD student, Lecturer	<u>guozenan@eng.unideb.hu</u> Building B, room I/6
Aminu Babangida, PhD student, Lecturer	aminu.babangida@inf.unideb.hu Building B, room I/6
Gabriella Kövér, Administrative Assistant	<u>kover.gabriella@eng.unideb.hu</u> Building B, room 4

DEPARTMENT OF AVIATION ENGINEERING

1 Szatke Ferenc utca, Debrecen, H-4030, Tel: +36-52-870-270, <u>www.pharmaflight.hu</u>

name, position	e-mail, room number
Enikő Földi JD, Chief Executive Director	training@pharmaflight.hu
Gyula Győri, Honorary Associate Professor, Head of Department	<u>training@pharmaflight.hu</u>
Krisztina Szabó MD, Head of Aeromedical Department	aeromedical@pharmaflight.hu

ACADEMIC CALENDAR

General structure of the academic year:

	1 st week	Registration*	1 week
	$2^{nd} - 7^{th}$ week	Teaching Block 1	6 weeks
Study period	8 th week	1 st Drawing Week	1 week
	$9^{th} - 14^{th}$ week	Teaching Block 2	6 weeks
	15 th week	2 nd Drawing Week	1 week
Exam period	directly after the study period	Exams	7 weeks

*Usually, registration is scheduled for the first week of September in the fall semester, and for the first week of February in the spring semester.

ACADEMIC CALENDAR OF THE FACULTY OF ENGINEERING 2023/2024

Opening ceremony of the academic year	3 September 2023 (Sunday)
Registration week	28 August – 3 September 2023
Revision week (exams in Exam courses may be scheduled during this week)	28 August – 1 September 2023
1 st semester study period in MSc and BSc programs	4 September - 8 December 2023 (14 weeks) In case of finalist courses: 4 September - 3 November 2023 (9 weeks)
Reporting period I (Drawing week I)	16 - 20 October 2023 (4 working days without scheduled lessons, consultation schedule announced previously)
Conferences, Career Days	16-20 October 2023
Career Days in Mechanical Engineering (Exhibition and ISCAME – International Scientific Conference on Advance in Mechanical Engineering) – organised by the Department of Mechanical Engineering	9 – 10 November 2023

Faculty Conference of Scientific Students' Association	24 November 2023
Reporting period II (Drawing week II)	4-8 December 2023 (5 working days without scheduled lessons, consultation schedule announced previously)
1 st semester examination period	11 – 22 December 2023 (2 weeks) 8 January – 9 February 2024 (5 weeks) In case of finalist courses: 6 November - 8 December 2023 (5 weeks)
Thesis (BSc, MSc) submission deadline	As defined by the departments; max. 14 days of the beginning of the final examination period.
Final examination period	As defined by the departments; at least one occasion between 11 December 2023 and 26 January 2024.
Registration week	5 - 11 February 2024
2 nd semester study period in MSc and BSc programs	12 February - 17 May 2024 (14 weeks) In case of finalist courses: 12 February - 12 April 2024 (9 weeks)
Reporting period I (Drawing week I)	25 - 28 March 2024 (5 working days without scheduled lessons, consultation schedule announced previously)
Conferences, Career Days	25-28 March 2024
Career Days – "Industry Days in Debrecen 2024" (working days without teaching for Mechanical Eng. BSc, Mechanical Eng. MSc, Environmental Eng. MSc, Mechatronics Eng. BSc, Mechatronical Eng. MSc, Civil Eng. BSc students)	27 - 28 March 2024
Career Days and Exhibition in Building Services Engineering (organised by the	9 - 10 May 2024

Department of Building Services and Building Engineering)	
'Problem-based Learning in Engineering Education' Conference organised by the Department of Basic Technical Studies	15 May 2024
Reporting period II (Drawing week II)	13 - 17 May 2024 (5 working days without scheduled lessons, consultation schedule announced previously).
2 nd semester examination period	21 May – 5 July 2024 (7 weeks) In case of finalist courses: 15 April - 17 May 2024 (5 weeks)
Thesis (BSc, MSc) submission deadline	As defined by the departments; max. 14 days of the beginning of the final examination period.
Final examination period	As defined by the departments; at least one occasion between 21 May and 21 June 2024. The departments shall announce the date of the final examination until 20 February 2024.

THE PROFESSIONAL PILOT UNDERGRADUATE PROGRAM

INFORMATION ABOUT THE PROGRAM

Name of undergraduate program:	Professional Pilot Undergraduate Program
Specialization available:	-
Field, branch:	Engineering
Level:	BSc
Qualification:	Professional Pilot
Mode of attendance:	Full-time
Faculty:	Faculty of Engineering
Program coordinator:	Géza Husi PhD habil Full Professor
Program length:	7 semesters
Credits total:	210 credits

The aim of the program is to train professional pilots who are familiar with air transportation, able to fulfil the job of a professional pilot at firms and organizations, and to operate aircrafts. Also, they are able to carry out tasks related to air operation, ground handling, quality assurance, organizing and solving the transportation of cargo. They have completed the requirements of the ATP(A) (Airline Transport Pilot, Aircraft) integrated program. The degree offers the opportunity to advance to master's level study.

Professional competences to be acquired

a) knowledge

He/She knows

- and applies English aviation terminology defined for professional pilot training according to EU Act 1178/2011 (03/11/2011).
- the conceptual system, the most essential relations and theories relating to his/her professional field.
- the main problem-solving and learning methods of the main theories in the field of aviation.
- the risk of fire and accidents and the scope of their prevention and avoidance.
- the international and domestic organizations of aviation, the regulations (ICAO Annex, the regulations of the European Union, EASA standards).
- the factors influencing aviation safety, the basics of Safety Management System (SMS).

- the basics of informatics (word processing, spread sheet and database management).
- and applies the theoretical basis of navigation and performance calculation.
- the basic concepts and phenomena of meteorology, their effect on flight and the atmospheric processes endangering flight.
- flight rules and procedures, the basics of developing procedures.
- and is able to apply the procedures of visual and instrumental navigation.
- and is able to apply the rules of radio communication.

b) skills

He/She is able to

- fly an aircraft in civil aviation by using his/her personal competences (responsibility, exactitude, stamina, stress tolerance, visual-spatial ability, movement coordination, manual skills, psychomotor functions, communication skills, divided attention, decisiveness).
- fly an aircraft in civil aviation by using his/her social competences (interpersonal skills, management skills, conflict resolution skills, teamwork, and cooperation).
- fly an aircraft in civil aviation by using his/her competences in methods [analytic thinking, self-control (self-checking skills), problem-solving, troubleshooting, situation awareness, thinking in systems, seeing the essence (understanding), decisiveness, prioritising].
- pass the theoretical and practical exams of ATP(A) integrated training.
- identify routine problems related to his/her profession, explore and describe the theoretical and practical background to solve them (with the practical application of standard procedures).
- understand literature and documentations written in English.
- carry out engineering tasks related to air operation and control.
- complete first mate tasks after type training on multi-crew aeroplanes.
- manage flights as an instrument-rated commercial pilot (with Commercial Pilot Licence/Instrument Rating, CPL/IR) in accordance with aviation regulations and rules in air.
- plan a flight and make the required navigation and performance calculation.
- create and submit a flight plan.
- operate airframes, engines, instruments and their systems in accordance with the instructions of Aircraft Flight Manual, recognize and handle hazards.
- operate the flight deck radio equipment and the radio-navigation system.
- navigate visually according to his/her individual limits under Visual Meteorological Conditions (VMC) on the basis of his/her geographical knowledge, map reading skills, visual and terrain objects identification skills and his/her proficiency.

- navigate with on-board instruments according to his/her individual limits under Instrument Meteorological Conditions (VMC) on the basis of his/her radio-navigation knowledge and proficiency.
- apply the rules of radiotelephony in English.
- analyse, assess meteorological situations and take all the necessary measures.
- interpret meteorological messages, charts and reports, consider them by flight planning and during flight.
- obey aviation safety rules.
- hold a management position in a department (e.g. flight operations, ground operations, flight safety, or compliance manager) after further training and considerable amount of practice.
- endure the monotony of work to complete practical tasks.

c) attitude

He/she

- aims for continuous self-development in the field of aviation in accordance with his/her professional endeavours.
- aims to solve problems and make leadership decisions relying on the opinions of his/her inferiors and in cooperation with them.
- shares his/her experience with his/her co-workers to promote his/her development.

d) *his/her autonomy and responsibility*

He/she

- supervises the work of personnel he/she is in charge of according to the instructions of his/her superior, and monitors the operation of machines and facilities.
- evaluates the effectiveness, efficiency and security of his/her inferiors' work.
- monitors the development of his/her co-workers and promotes their professional development.
- monitors the changes of law, technique, technology and administration in his/her professional field.

Program Specifications

Entry requirements for the undergraduate training programme:

- Language exam in English level B2, type: complex or GCSE exam or a certificate of the same level and type.

- Class 1 medical certificate pursuant to Commission Regulation (EU) No. 1178/2011 (03/11/2011) Medical (MED) requirements.

A professional pilot bachelor's detree itself does not entitle anyone to provide activities of a professional pilot. The requirement of issuing a certificate of basic qualification is to obtain a pilot licence. A professional pilot and pilot licences can be acquired after passing accredited theoretical and practical exams at Aviation Administration of National Transport Authority. The requirement of issuing a certificate of basic qualification is to obtain a pilot licence for professional pilot activities.

Credit System

Majors in the Hungarian Education System have generally been instituted and ruled by the Act of Parliament under the Higher Education Act. The higher education system meets the qualifications of the Bologna Process that defines the qualifications in terms of learning outcomes: statements of what students know and can do on completing their degrees. In describing the cycles, the framework uses the European Credit Transfer and Accumulation System (ECTS).

ECTS was developed as an instrument of improving academic recognition throughout the European Universities by means of effective and general mechanisms. ECTS serves as a model of academic recognition, as it provides greater transparency of study programs and student achievement. ECTS in no way regulates the content, structure and/or equivalence of study programs.

Regarding each major, the Higher Education Act prescribes which professional fields define a certain training program. It contains the proportion of the subject groups: natural sciences, economics and humanities, profession-related subjects and differentiated field-specific subjects.

The following professional fields define the Professional Pilot BSc training programme:

Natural Sciences: 40-46 credits;

Economics and Humanities: 14-26 credits;

Field-specific professional skills for professional pilots: 70-95 credits.

Minimum of credit points assigned to optional subjects: 10

Credit points assigned to thesis: 15

Credits total: 210

Guideline (Lisf of Subjects/Semesters)

The total number of credit points (210) of the training program can be obtained by completing the subjects of the curriculum. There is a certain degree of freedom in the order students can complete the subjects. However, it is recommended to follow the suggested order because some subjects can only be taken after the completion of the prerequisite subject(s), and/or can be the prerequisites for other subjects.

The list of subjects you have to complete in the semesters according to the model curriculum of Professional Pilot BSc programme:

1 st semester	
Faculty of Engineering	ATP(A)
Aviation Terminology I	Basics of Aviation I
Engineering Physics	Theoretical Knowledge of Airline
Informatics for Engineers I	Transport Pilot Licence I (ATPL)
Mathematics I	
Statics and Strength of Materials	
Thermodynamics and Fluid Mechanics I	
2 nd semester	

2 Semester	
Faculty of Engineering	ATP(A)
Aircraft Technology	Basics of Aviation II
Aviation Terminology II	Communication VFR (ATPL)
Dynamics and Vibration	Internship I
Mathematics II	Meteorology I (ATPL)
Mathematics Comprehensive Exam	Theoretical Knowledge of Airline Transport Pilot Licence II (ATPL)
Thermodynamics and Fluid Mechanics II	

3 rd semester		
Faculty of Engineering	ATP(A)	
Descriptive Geometry	Flight Training I	
Electrotechnics and Electronics	General Navigation (ATPL)	
Mechanical Machines and Machine Elements	Meteorology II (ATPL)	

Mechatronic Devices (Sensors, Actuators, Motors)

Theoretical Knowledge of Airline Transport Pilot Licence III (ATPL)

Optional Subject I

4 th semester	
Faculty of Engineering	ATP(A)
Economics for Engineers	Aircraft General Knowledge I - Airframe,
Manufacturing Technologies	Systems, Power Plants (ATPL)
Materials Engineering	Aircraft General Knowledge –
Technique of Measurement	Instrumentation (ATPL)
Optional Subject II	Communication IFR (ATPL)
	Flight Training II
	Internship II
	Radionavigation (ATPL)
5 th semester	
Faculty of Engineering	ATP(A)
Environmental Protection and Dangerous Goods	Air Law (ATPL)
Manufacturing Technologies	Aircraft General Knowledge II - Airframe, Systems, Power Plants (ATPL)
Microeconomics and Economical Processes of Enterprises	Flight Planning and Monitoring (ATPL)
Quality and Technical Management	Flight Training III
Optional Subject III	
6 th semester	
Faculty of Engineering	ATP(A)
Environment, Health and Safety, Ergonomics (Basics of EHS)	Flight Training IV
Thesis I	Human Performance (ATPL)
Optional Subject IV	Internship III

Mass and Balance (ATPL)

Operational Procedures (ATPL)

Performance (ATPL)

7	th semester
Faculty of Engineering	ATP(A)
Thesis II	Flight Training V
Optional Subject V	Type Rating or APS MCC and JOC

About the prerequisites of each subject please read the chapter "Course Descriptions for Professional Pilot BSc"!

Work and Fire Safety Course

According to the Rules and Regulations of the University of Debrecen, students must complete the online course for work and fire safetyin the first semester of their studies. Registration for the course and its completion are necessary for graduation. Registration in the Neptun system by the subject: MUNKAVEDELEM

Students have to watch/read an online material to get the signature on Neptun for the completion of the course. The link of the online course is available on the website of the Faculty.

Special emergency, safety and compliance requirements apply to the flight training at the Department of Aviation Engineering. These rules are set and communicated by the Department.

Internship

Professional Pilot BSc students have to do internship in three parts (8, 8 and 8 weeks) as described in the model curriculum. Internship courses are offered in the second, fourth and sixth semester.

Internships involve daily flights during the relevant 8-week period in summer. Number of credit points assigned to internship: 10. Internship can be undertaken at an external internship place (ATO, Approved Training Organization) with which the higher education institution has an agreement and which has been approved and monitored by the National Transport Authority.

Special prerequisites of the internship:

- ICAO level 4 language exam or above level,
- EASA Class 1 medical certificate pursuant to Commission Regulation (EU) No. 1178/2011 (03/11/2011) Medical (MED) Requirements.

Modules

There are two modules available for the students during the 7th semester. The Approved Training Organization (ATO) assign the modul for the student based on their individual performance and final result until the beginning of 7th semester in accordance with the grading system published in Regulation 1178/2011/EU (Part-FCL) considering the complexity of the course. To apply for the module, a written recommendation from the Head of Training of the ATO and an approval from the Dean is required. The moduls are as follows:

- 1. Modul based on Type Rating Course
 - Prerequisites:
- Successful completion of Flight Training IV and Internship III subjects with final result grade 4 or better until the beggining of 7th semester,
- Successfully passed 13 ATPL theoretical knowledge exams until the beginning of 7th semester,
- Successfully passed CPL/IR skill test until the beginning of 7th semester.
 - Modul subject: Type Rating Course
- 2. Modul based on Airline Pilot Standard Multi Crew Cooperation and Jet Orientation Course (APS MCC and JOC)
 - Prerequisites:
- Successful completion of Flight Training IV
- Successfully passed 13 ATPL theoretical knowledge exams.
 - Modul subject: APS MCC and JOC

Training Termination

The training shall not be continued if the student is unable to meet the requirements for the professional pilot BSc program and the training elements specified in the given training manual developed by the Regulation 1178/2011/EU (03.11.2011). The student will receive a detailed explanation of the reason for the training suspension.

Physical Education

According to the Rules and Regulations of the University of Debrecen, students must complete Physical Education course at least in two semester during his/her BSc studies. Our University offers a wide range of facilities to complete them. Further information is available from the Sport Centre of the University, its website: http://sportsci.unideb.hu.

Optional Courses

According to the Rules and Regulations of the University of Debrecen, students must complete elective courses during their BSc studies. These elective courses are opened by the Departments at the Faculty of Engineering at the beginning of the actual semester. Students can also select optional courses offered by other faculties of University of Debrecen to complete. Optional subjects can be completed in any semester and with any number of subjects but in the Professional Pilot BSc programme you have to gain at least 10 credits by completing optional subjects.

The list of the actual semester's optional subjects can be found under "Current Students">"Useful Information about your Study">"Optional subjects".

Pre-degree Certification

A pre-degree certificate is issued by the Faculty after completion of the bachelor (BSc) program. The pre-degree certificate can be issued if the student has successfully completed the study and exam requirements as set out in the curriculum, the requirements related to Physical Education, internship (mandatory) – with the exception of preparing thesis – and gained the necessary credit points (210). The pre-degree certificate verifies (without any mention of assessment or grades) that the student has fulfilled all the necessary study and exam requirements defined in the curriculum and the requirements for Physical Education. Students who obtained the pre-degree certificate can submit the thesis and take the final exam.

Thesis

Thesis is the creative elaboration of a professional task (engineering, design, development, research or research development) in written form as defined in the requirements of the training program. By solving the task, the student relies on his/her studies utilizing national and international literature under the guidance of an internal and external supervisor (if needed). By preparing and defending thesis students - who complete the Professional Pilot undergraduate program - prove that they are capable of the practical applications of the acquired skills, summarizing the work done and its results in a professional way, creatively solving the tasks related to the topic and doing individual professional work.

Students in the BSc program must write a thesis as a prerequisite of the final exam. Requirements of the training program contain the content requirements for thesis, general aspects of the evaluation and the number of credit points assigned to thesis (15).

Thesis topics are announced by the departments no later than the end of the fourth week of the study period of the last but one semester. Students may also offer a topic for the thesis, which the competent head of department may accept or reject. The conditions on the acceptance of a SSS (Student Scientific Society) paper as a degree thesis are defined by the Faculty. SSS papers are supposed to meet the requirements of a thesis both in form and content. Furthermore, it is necessary that the committee of the Pre-SSS make suggestions on the SSS papers to be accepted as theses.

Formal requirements of thesis shall be designated by the Department of Air- and Road Vehicles and must be announced in writing together with other thesis-related assignments.

The preparation of a thesis shall be overseen by an internal supervisor approved by the department, and may be assisted by an external supervisor (also approved by the department).

The faculty academic calendar (issued by the Vice-Rector for Education) sets the thesis submission deadline, for want of this the deadline is the 14. day 12 noon before the first day of the final exam.

The thesis submission deadline is defined in the academic calendar of the Faculty (issued by the Vice-Rector for Education) or, failing that, it is 12 a.m. on the 14th day before the first day of the final exam. The thesis can be submitted only if both the internal and the external supervisors approve. It is evaluated by an independent external reviewer, and the Head of the Department of Air- and Road Vehicles makes a suggestion to the final examination board on its classification based on a five-grade scale.

If the reviewer evaluates the thesis firmly as fail, the student may not take the final exam and must create a new thesis. Students must be informed about it. Conditions on resubmitting the thesis are designated by the head of the relevant educational unit responsible for the major or specialization.

Final exam

After receiving the pre-degree certificate, students conclude their studies by taking the final exam of Professional Pilot undergraduate (BSc) program. The final exam shall test and assess the knowledge, skills and abilities requisite to the award of the degree, whereby students shall also prove their ability to apply the acquired knowledge in practice. The conditions for taking the final exam and the parts of the final exam itself shall be defined in the requirements for the training program.

The final exam shall be taken in the first exam period following the award of the predegree certificate or within 2 years after the termination of student status in any exam period according to the requirements of the training program. After the fifth year of the termination of student status, the candidate is not allowed to take the final exam. Only students who do not have outstanding charges are allowed to take the final exam. In each academic year, there are two final exams: one in January, another one in June. The final exam shall be taken in front of a board on the previously announced exam dates. If the candidate fails to take the final exam until the termination of his/her student status, then he/she is allowed to take the exam any time after the termination of his/her student status on the dates according to the regulations which applied when the candidate was supposed to take the final exam for the first time.

Diploma requirements:

Langauge exam in English (level: B2, type: complex) or GCSE exam or a certificate of the same level and type and a good command of Professional English according to Commission Regulation (EU) No. 1178/2011 (03/11/2011) which lays down the conditions on professional pilot training.

The chief forms of testing and assessing knowledge are included in Article 18 of Rules and Regulations of the University of Debrecen, the order of examinations is specified in Article 19. The supplement, along with special provisions for the Faculty of Engineering, is included in the Rules and Regulations, as well. The course requirements of the training programme have previously been specified.

Conditions on taking the final exam:

- obtaining the credit points defined in the requirements and the curriculum of the program,
- fulfilling requirements to which no credit points have previously been assigned,
- thesis reviewed and accepted by the referees

holding licences, passing the exams of the Hungarian Aviation Authority.

Final exam board:

The final exam board consists of the chair, the vice-chair, the members and the examiners. The chairperson final examination board shall be delegated and commissioned with the consent of the Faculty Council by the dean of the faculty. He/she is selected from the acknowledged external experts of the professional field. Traditionally, a chairperson and, in case of his/her absence or indisposition, a vice-chair shall be commissioned. The exam board consists of – besides the chair or the vice-chair – at least one member (university professor, college professor or associate professor) and at least two examiners (associate professor /college level/, senior lecturer, junior lecturer, dept. teacher). In case of equal division of the votes, the chairperson shall be given the casting vote.

Final exam process

Final exam consists of two parts:

• Thesis presentation and defence,

• The candidate is expected to select a topic randomly from the subjects of the final exam and will be examined after preparation.

The final exam shall start if the thesis has previously been accepted unanimously both by the reviewer and the department. The two parts of the final exam shall not be separated. Both parts of the final exam shall be assessed on a five-grade scale by the members of the final examination board. The board shall then consult behind closed doors and vote about the final grade for the final exam. The result of the final exam shall be announced by a member of the board. A grade is awarded for the thesis, its defence and the answers to the questions related to the thesis respectively. Minutes shall be taken during the final examination.

Final exam topics:

- Type rating course module:
 - ATPL(A) subjects' topics
 - Type rating course topics
- APS MCC and JOC module:
 - ATPL(A) subjects' topics
 - APS MCC course topics

Final exam grade:

The grade of the final exam is the average of the grades awarded for the oral part of the final exam and thesis. Therefore, it is calculated as follows:

$$x = \frac{b+c}{2}$$

where

x= final exam grade

b= average of the grades awarded for the oral part of the final exam, rounded down to two decimal places,

c= grade awarded for thesis.

Improving failed final exam:

If any part of the final exam is evaluated as fail, according to the existing rules of the university, it can be retaken. If a thesis is evaluated unanimously as fail, the student may not take the final exam and shall write a new, modified thesis. The retake of the final exam may be attempted in the following examination period at the earliest.

SPECIAL INFORMATION RELATED TO THE ATO COURSES

For the general rules for ATO course, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website (<u>https://aircraft.unideb.hu/en/training-guidance</u>) and the ATO online administrative interface.

COURSE DESCRIPTIONS FOR PROFESSIONAL PILOT BSC

1st semester

Mathematics I

Subject group: Basic Natural Sciences – Faculty of Engineering Model curriculum number: 1 Code: MK3MAT1A08GX17_EN, MK3MAT1A08EX17_EN, MK3MAT1A08RX17_EN ECTS Credit Points: 8 Evaluation: mid-semester grade Year, Semester: 1st year/1st semester Its prerequisite(s): -Further courses are built on it: Yes Number of teaching hours/week (lecture + practice): 4+4

Topics:

The basic notions of linear algebra, differentiation, and integration for real functions; some applications in physics.

Part A - Linear algebra: real numbers, coordinate systems, sets, sequences of real numbers and their limit, series of real and complex numbers, series of real functions, vector geometry, vector algebra and applications, the set of the complex numbers, complex series, approximation of real functions, matrices, determinants, vector spaces, systems of linear equations, linear functions

Part B - Differential and integral calculus: real functions, elementary functions, limit and continuity of real functions, differentiation, L'Hospital's rule, Taylor polynomial, analysis of differentiable functions, primitive function (antiderivative), indefinite integral, the Riemann integral, the Newton-Leibniz theorem, numerical integration, improper integral, applications of the integral

Literature:

Required:

- Adrienn Varga, Mathematical Analysis for Engineers, Debrecen, Hungary: Dupress (2019), 118 p. ISBN: 9789633188156
- Lajos, Hajdu; Adrienn, Varga, Engineering Mathematics: part I. Debrecen, Hungary: Dupress (2021), 154 p. ISBN: 9789633189030

Recommended:

Thomas' Calculus, Addison Wesley (11th edition, 2005), ISBN: 0-321-24335-8

S. Minton, Calculus Concept and Connections, McGraw Hill (2006), ISBN 0-07111200-6 Recommended textbook:

Szíki Gusztáv Áron, Nagy Kondor Rita, Kézi Csaba, Differential and integral calculus for Engineering and Economists Debrecen, Magyarország: Dupress (2019), 225 p. ISBN: 9789633187418

1 st week Registration week	
2 nd week:	3 rd week:
Lecture:	Lecture:
Part A: Real numbers, coordinate systems Part B: Real functions	Part A: Sequences of real numbers and their limit
Practice:	Part B: Elementary functions
Part A: Sets Part B: Real functions	Practice:
	Part A: Vector geometry, vector algebra
	Part B: Rational fractions, inverse functions
4 th week:	5 th week:
Lecture:	Lecture:
Part A: Series of real numbers	Part A: Series of real functions
Part B: Limits of real functions, continuity of real functions	Part B: Differentiation
Practice:	Practice:
Part A: Vector geomety, vector algebra	Part A: The set of the complex numbers Part B: Differentiation
Part B: Calculations of limits of real	
functions	
6 th week:	7 th week:
Lecture:	Lecture:
Part A: Approximations of real functions	Part A: Series of real numbers
Lagrange interpolation. Linear regression.	Part B: Mean value theorems. Investigation
Part B: Differentiation: L'Hospital's rule,	of differentiable functions.
Taylor polynomials.	Practice:
	Part A: Summary, sample test

Practice:	Part B: Summary, sample test
Part A: Sequences of real numbers.	
Part B: Differentiation: L'Hospital's rule. Taylor polynomials.	
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture:	Lecture:
Part A: Matrices	Part A: Vector spaces
Part B : Primitive function (antiderivative), indefinite integral	Part B: Riemann integral Practice:
Practice:	Part A: Vector spaces
Part A: Matrices	Part B: Determinations of primitive
Part B: Determinations of primitive functions.	functions
11 th week:	12 th week:
Lecture:	Lecture:
Lecture: Part A: Systems of linear equations	Lecture: Part A: Linear functions
Part A: Systems of linear equations Part B: Improper integrals. Numerical	Part A: Linear functions Part B: Applications of the integration in
Part A: Systems of linear equations Part B: Improper integrals. Numerical integration.	Part A: Linear functions Part B: Applications of the integration in geometry and physics
Part A: Systems of linear equations Part B: Improper integrals. Numerical integration. Practice: Part A: Solutions of systems of linear	Part A: Linear functions Part B: Applications of the integration in geometry and physics Practice: Part A: Linear transformations of the plane
Part A: Systems of linear equations Part B: Improper integrals. Numerical integration. Practice: Part A: Solutions of systems of linear equations	Part A: Linear functions Part B: Applications of the integration in geometry and physics Practice: Part A: Linear transformations of the plane and the space Part B: Improper integrals. Numerical
 Part A: Systems of linear equations Part B: Improper integrals. Numerical integration. Practice: Part A: Solutions of systems of linear equations Part B: Determination of Riemann integral 	Part A: Linear functions Part B: Applications of the integration in geometry and physics Practice: Part A: Linear transformations of the plane and the space Part B: Improper integrals. Numerical integration
 Part A: Systems of linear equations Part B: Improper integrals. Numerical integration. Practice: Part A: Solutions of systems of linear equations Part B: Determination of Riemann integral 13th week: 	Part A: Linear functions Part B: Applications of the integration in geometry and physics Practice: Part A: Linear transformations of the plane and the space Part B: Improper integrals. Numerical integration 14th week:
 Part A: Systems of linear equations Part B: Improper integrals. Numerical integration. Practice: Part A: Solutions of systems of linear equations Part B: Determination of Riemann integral 13th week: Lecture: 	Part A: Linear functions Part B: Applications of the integration in geometry and physics Practice: Part A: Linear transformations of the plane and the space Part B: Improper integrals. Numerical integration 14th week: Lecture:
Part A: Systems of linear equations Part B: Improper integrals. Numerical integration. Practice: Part A: Solutions of systems of linear equations Part B: Determination of Riemann integral 13 th week: Lecture: Part A: Linear functions	 Part A: Linear functions Part B: Applications of the integration in geometry and physics Practice: Part A: Linear transformations of the plane and the space Part B: Improper integrals. Numerical integration 14th week: Lecture: Part A: Mathematical software Part B: Mathematical software Practice:
 Part A: Systems of linear equations Part B: Improper integrals. Numerical integration. Practice: Part A: Solutions of systems of linear equations Part B: Determination of Riemann integral 13th week: Lecture: Part A: Linear functions Part B – Plane curves 	 Part A: Linear functions Part B: Applications of the integration in geometry and physics Practice: Part A: Linear transformations of the plane and the space Part B: Improper integrals. Numerical integration 14th week: Lecture: Part A: Mathematical software Part B: Mathematical software

Part B: Calculations for plane curves

15th week: 2nd drawing week

Requirements

A, for a signature and mid-semester grade:

Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three practice classes during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students can't take part in any practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. The final grade can be obtained in the following way:

- students write a mid-term test (Test I, A) from the linear algebra part of the material in the first drawing week; maximum 50 points can be achieved
- students write a mid-term test (Test I, B) from the differential and integral calculus part of the material in the first drawing week; maximum 50 points can be achieved
- students write an end-term test (Test II, A) from the linear algebra part of the material in the second drawing week; maximum 50 points can be achieved
- students write an end-term test (Test II, B) from the differential and integral calculus part of the material in the second drawing week; maximum 50 points can be

Mark ranges after the four tests:

- 175-200 points: excellent (5)
- 150-174 points: good (4)
- 125-149 points: satisfactory (3)
- 100-124 points: sufficient (2)
- 0-99 points: insufficient (1)

Those who fail, or do not accept their marks, can write a Test in any of the first three weeks of the exam period. This Test is a combination of the previous four tests, maximum 50 points can be achieved, and the mark ranges are proportional to the above table. For exam dates see Neptun. If someone does not accept her/his mark, it is possible to get any mark (better, the same, or worse) than the original mark by writing this Test.

Statics and Strength of Materials

Subject group: Basic Natural Sciences – Faculty of Engineering Model curriculum number: 4 Code: MK3STSZG04XX17-EN ECTS Credit Points: 4 Evaluation: mid-semester grade Year, Semester: 1th year, 1th semester Its prerequisite(s): -Further courses are built on it: No Number of teaching hours/week (lecture + practice): 2+2

Topics:

Introduction to engineering mechanics. Newton's laws of motion. Force, moment, and couples. Statics of a particle. Statics of rigid body. Planar force systems. Statics of planar structures. Internal force systems of rigid bodies. Loading of beams (cantilevers, freely supported beams, fraction lined beams). Determination of stress resultant diagrams (normal force, shear force and bending moment diagrams). Statically determined beam structures (hinged-bar systems, compound beams, truss systems). Fundamentals of Strength of Materials. Physical interpretation of strain terms. State of deformation. State of stresses. Constitutive equation (Hooke's law). Simple loadings (tension, compression, bending, torsion, shear). Sizing methods. Mohr's circle. Combined loadings (tension and bending, inclined bending, excentrical tension, tension and torsion, bending and torsion). An introduction to the finite element method.

Literature:

Compulsory:

- Russel C. Hibbeler (2006): Engineering Mechanics Statics and Dynamics, Prentice Hall, 2006. ISBN-13 9780132215091
- Ladislav Cerny (1981): Elementary Statics and Strength of Materials, McGraw-Hill, ISBN 0070103399, 9780070103399
- László Kocsis (1988): Brief Account of the Lectures of Mechanics, Strength of Materials, BME
- Ferdinand P. Beer, E. Russel Johnston, Jr., John T. DeWolf (2006): University of Connecticut Mechanics of Materials, 4th Edition, © 2006, ISBN-13 9780073107950

Recommended:

- Stephen Timoshenko (1955): Strength of Materials: Elementary Theory and Problems, Van Nostrand
- Jacob Pieter Den Hartog (1961): Strength of Materials, Courier Dover Publications, ISBN 0486607550, 9780486607559

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Mathematical preliminaries (vector-, matrixalgebra). Introduction to engineering mechanics. Statics of a particle	Lecture: Statics of rigid bodies. Moments. Equilibrium state of a rigid body. Planar force systems.
Practice: Calculation the resultant of 2 and 3 dimensional force systems acting on particles.	Practice: Calculation of moments. Examples for equilibrium state of rigid bodies and for planar force systems.
4 th week:	5 th week:
Lecture: Statics of planar structures. Supports and reaction forces.	Lecture: Internal force systems of rigid bodies. Loading of beams.
Practice: Practical examples for the determination of the reaction forces of statically determined structures.	Practice: Practical examples for the determination of the normal force, shear force and bending moment functions of beams.
6 th week:	7 th week:
Lecture: Determination of stress resultant diagrams of beams.	Lecture: Statically determined beam structures.
Practice: Practical examples for the determination of the normal force, shear force and bending moment diagrams of beams.	Practice: Analysis of hinged-bar systems and truss systems. 1st test.
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Fundamentals of Strength of Materials. Displacement-, strain- and stress field. Constitutive equation (Hooke's law).	Lecture: Simple loadings I: tension, compression and bending of prismatic beams. Fundamentals of sizing and control.
Practice: Practical examples for strain and stress calculations.	Practice: Practical examples for tension, compression and bending.
11 th week:	12 th week:
Lecture: Simple loadings II: torsion of prismatic beams with circular and ring cross sections. Mohr's circle. Shear.	Lecture: Combined loadings I: tension and bending, inclined bending, excentrical tension.
Practice: Practical examples for torsion and shear.	Practice: Practical examples for combined loadings.
13 th week:	14 th week:
	Lecture: The finite element method.

Lecture: Combined loadings II: tension and torsion, bending and torsion. Sizing methods.

Practice: Practical examples for combined loadings.

Practice: Case studies for numerical calculation of engineering structures. 2nd test.

15th week: 2nd drawing week

Requirements

A, for a signature:

Attendance at **lectures** is recommended, but not compulsory.

Participation at **practice** is compulsory. Students must attend the practice classes and may not miss more than three classes during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students cannot make up a practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is counted as an absence. In case of more than three absences, a medical certificate needs to be presented. Missed practices should be made up for at a later date, being discussed with the tutor. Students are required to bring the drawing tasks and drawing instruments to the course with them to each practice class. Active participation is evaluated by the teacher in every class. If a student's behaviour or conduct does not meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.

During the semester there are two tests: the 1^{st} test in the 7^{th} week and the 2^{nd} test in the 14^{th} week. Students have to sit for the tests.

B, for a grade:

The course ends in a mid-semester grade based on the test results.

The minimum requirement for both mid-term and end-term tests is 50%. Based on the score of the tests separately, the grade for the tests is given according to the following table:

Score=Grade

0-39 = fail (1); 40-52 = pass (2); 52-63 = satisfactory (3); 64-71 = good (4); 72-80 = excellent (5) If the score of the sum of the two tests is below 40, the student once can take a retake test of the whole semester material.

Engineering Physics

Subject group: Basic Natural Sciences – Faculty of Engineering Model curriculum number: 5 Code: MK3MFIZA04RX17-EN ECTS Credit Points: 4 Evaluation: exam Year, Semester: 1st year, 1st semester Its prerequisite(s): -Further courses are built on it: Yes Number of teaching hours/week (lecture + practice): 2+2

Topics:

Geometrical optics, kinematics and dynamics of particles, concept of mechanical work, kinetic and potential energy, electrostatics, electric fields around conductors, transport processes, steady-state transport of electric charge, steady-state heat transfer (conduction, convection and radiation)

Literature:

Compulsory:

- Alvin Halpern: 3,000 Solved Problems in Physics, SCHAUM'S SOLVED PROBLEM SERIES (2011), ISBN-13: 978-0071763462
- Jerry S. Faughn, Raymond A. Serway, Chris Vuille, Charles A. Bennett: Serway's College Physics, Published 2005 by Brooks Cole Print, ISBN 0-534-99723-6

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Geometrical (ray) optics.	Lecture: Kinematics of a particle I.
Concept of geometrical optics, law of reflection and refraction (Snell's law), Brewster's angle, Optics of prisms and	Description of the motion by scalar quantities: Scalar position, velocity and acceleration.
lenses, imaging properties and magnification, aberrations, compound	Example: uniform and uniformly varying motion
lenses. Practice: Solving problems for the reflection and refraction of light beams and for the imaging of lenses and compound lenses.	Practice: Solving problems for uniform and uniformly varying motions.
4 th week:	5 th week:
Lecture: Kinematics of a particle II. Description of the motion by vector quantities: Position vector, vector velocity and acceleration. Example: throwing problems, circular motion.	Lecture: Kinetics of particles I. Inertial frame of reference, Newton's Laws, force formulas. Application of Newton's Laws in static and dynamic problems.

Practice: Solving throwing and circular motion problems.	Practice: Application of Newton's laws in kinetic problems.
6 th week:	7 th week:
Lecture: Kinetics of particles II. Concept of work and kinetic energy, work-energy theorem. Application of work-energy theorem in dynamic problems.	Lecture: Electrostatics I. Electric field strength and flux, Gauss's law for electricity (Maxwell's first equation), potential energy in electric fields.
Practice: Application of Newton's laws and the work energy theorem in kinetic problems.	Practice: Calculation of the electric field strength and its flux in the electrostatic fields of different charge arrangements.
8 th week: 1 st drawing week Test 1	
9 th week:	10 th week:
Lecture: Electrostatics II. Electric voltage	Lecture: Transport processes
and potential, capacitance, capacitance of planar, cylindrical and spherical capacitors, the energy of capacitors, capacitor circuits.	Concept of physical system, current intensity and source strength, extensive and intensive physical properties, conduction and convection current.
Practice: Calculating the capacitance and stored energy of different types of capacitors and capacitor connections.	Equation of balance and steady-state conduction. Thermal conductivity and conductive resistance. Conductive resistance circuits.
	Practice: Application of the equation of balance and steady-state conduction in different physical problems.
11 th week:	12 th week:
Lecture: Steady state transport of electric charge (Direct electric current). Electric current intensity, electrical conductivity and resistance, Ohm's law, electric work and power, characteristics of DC sources, Kirchhoff's circuit laws, solution of DC circuits Practice: Solution of DC circuits	Lecture: Steady-state heat transfer I - Thermal conduction. Concept of heat current and thermal conduction, equation of steady-state thermal conduction, thermal conductivity and resistance, steady state temperature distribution in a one dimensional wall of thermal conductivity Practice: Solving thermal conduction
	problems
13 th week:	14 th week:
Lecture: Steady-state heat transfer II - Thermal convection. Concept of thermal convection and heat transfer, equation of steady-state heat transfer, heat transfer coefficient and resistance, overall heat transfer coefficient and resistance	Lecture: Steady-state heat transfer III - Thermal radiation. Thermal radiation characteristics, concept of black body radiation, fundamental laws of thermal radiation (Planck distribution, Wien

Practice: Calculating the steady state temperature distribution in a one-dimensional wall of thermal conductivity.

displacement law, Stefan-Boltzmann and Kirchhoff's law), gray body radiation

Practice: Solving thermal radiation problems.

15th week: 2nd drawing week Test 2

Requirements

A, for a signature:

Participation at lectures is compulsory. Students must attend lectures and may not miss more than three of them during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at lectures will be recorded by the lecturer. Being late counts as an absence. In case of further absences, a medical certification needs to be presented. Missed lectures must be made up for at a later date, being discussed with the tutor.

Students have to write two midterm tests during the semester. The first (40 points max) in the 8th, the second (40 points max) in the 14th week. At the end of the semester everybody will get a seminar grade on the basis of the table below:

0-39 = Fail (1); 40-50 = Close fail (2); 51-60 = Improvement needed (3); 61-70 = Very good (4); 71-80 = Excellent (5)

If somebody fails then he has to write both tests in the 1st week of the exam period again. If the result is 40 points (50%) or better, then he can take an exam. If somebody has to repeat his midterm tests then his seminar grade cannot be better than (2).

There will be homework from week to week. Only students who have handed in all their homework at the time of the midterm test will be allowed to write it. The problems in the midterm tests will be selected from the homework assignments.

B, for a grade:

Students get an exam grade for their exam. The final grade will be the average of the seminar and exam grade. If it is for example (3.5) then the lecturer decides if it is (3) or (4).

Thermodynamics and Fluid Mechanics I

Subject group: Basic Natural Sciences – Faculty of Engineering Model curriculum number: 7 Code: MK3THE1R06HX17-EN ECTS Credit Points: 4 Evaluation: exam Year, Semester: 1st year, 1st semester Its prerequisite(s): -Further courses are built on it: Yes Number of teaching hours/week (lecture + practice): 2+2

Topics:

Definitions and Fundamental Ideas of Thermodynamics. Changing the State of a System with Heat and Work. Zeroth Law of Thermodynamics. The isotherm, isochor, isobar, adiabatic and polytrophic process. The First Law of Thermodynamics: Conservation of Energy. Corollaries of the First Law. Generalized Representation of Thermodynamic Cycles. The Carnot Cycle. Entropy. The second law of Thermodynamics. Reversibility and Irreversibility in Natural Processes. Technical work. Enthalpy. Exergy. Mixtures: Partial pressure, Dalton's laws. Gas mixtures. Gas mixtures. Real gases. Steam. Humid air. T-s diagram. Energy cycles.

Heat transfer. Basic forms of heat transfer. Fundamental equations. General differential equation of heat conduction. Steady state and transient conduction. Thermal resistance. Conduction (plane walls, cylindrical walls, spherical walls). Convection: concepts and basic relations, boundary layers, similarity concept. Free convection, forced convection (the Reynolds, Grasshof, Prandtl, Nusselt numbers).

Literature:

Compulsory:

- Lakatos Á. Basics of Heat Transfer and Fluid Mechanics. 2014, Terc Kft.
- Robert Balmer (2006) Thermo-dynamics, Jaico Publishing House, ISBN: 817224262X, 868 pages
- James R. Ogden (1998) Thermodynamics Problem Solver, Research and Education Association, ISBN: 0878915559, 1104 pages.
- Warren M. Rohsenow, James P. Hartnett, Young I. Cho (1998), Handbook of Heat Transfer, McGraw-Hill New York, ISBN: 0070535558 / 9780070535558, 1344 pages.

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Definitions and Fundamental Ideas of Thermodynamics. Changing the State of a System with Heat and Work. Zeroth Law of Thermodynamics	Lecture: The isotherm, isochor, isobar, adiabatic and polytrophic process. The First Law of Thermodynamics: Conservation of Energy
Practice: Solving problems in the theme of the lecture	Practice: Solving problems in the theme of the lecture
4 th week:	5 th week:

Lecture: Corollaries of the First Law. Generalized Representation of Thermodynamic Cycles. Practice: Solving problems in the theme of the lecture	Lecture: The Carnot Cycle. Entropy. The second law of Thermodynamics. Practice: Solving problems in the theme of the lecture
6 th week:	7 th week:
Lecture: Reversibility and and Irreversibility in Natural Processes. Technical work. Enthalpy. Exergy.	Lecture: Mixtures: Partial pressure, Dalton's laws. Gas mixtures. Gas mixtures. Real gases.
Practice: Solving problems in the theme of the lecture	Practice: Solving problems in the theme of the lecture
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Steam. Humid air. T-s diagram. Practice: Solving problems in the theme of	Lecture: Energy cycles. Carnot's Cycle, Joule's cycle.
the lecture	Practice: Solving problems in the theme of the lecture
11 th week:	12 th week:
Lecture: Heat transfer. Basic forms of heat transfer Practice: Solving problems in the theme of	Lecture : Fundamental equations. General differential equation of heat conduction. Steady state and transient conduction.
the lecture threaded joints in section and on view.	Practice: Solving problems in the theme of the lecture
13 th week:	14 th week:
Lecture: Thermal resistance. Conduction (plane walls, cylindrical walls, spherical walls). Convection: concepts and basic	Lecture: Free convection, forced convection (the Reynolds, Grasshof, Prandtl, Nusselt numbers).
relations, boundary layers, similarity concept.	Practice: Solving problems in the theme of the lecture
Practice: Solving problems in the theme of the lecture	
15 th week: 2 nd drawing week	

Requirements

A, for a signature:

Attendance on the lectures is recommended, but not compulsory.

Participation at practice is compulsory. Student must attend the practices and my not miss more than three practice during the semester. In case a student misses more than three,

the subject will not be signed and the student must repeat the course. Student cannot make up a practice with another group. The attendance on practice will be recorded by the practice leader. Being late is counted as an absence. In case of more than three absences, a medical certificate needs to be presented. Missed practices should be made up for at a later date previously discussed with the tutor. Students are required to bring the drawing tasks and drawing instruments for the course with them to each practice. Active participation is evaluated by the teacher in every class. If student's behavior or conduct does not meet the requirements of active participation, the teacher may evaluate their participation as an absence due to the lack of active participation in class.

During the semester, there are two tests: the mid-term test is in the 8th week and the end-term test in the 15th week. Students have to sit for the tests.

B, for grade:

The course ends with exam grade. Based on the average of the test results x 0.3 + the exam grade from the theory x 07 the mid-semester grade is calculated as an average of them:

The minimum requirement for the mid-term, end-term tests and for the exam is 50%. Based on the score of the tests separately, the grade for the tests is given according to the following table:

Score / Grade

0-50 = fail (1); 51-60 = pass (2); 61-74 = satisfactory (3); 75-89 = good (4); 90-100 = excellent (5);

Aviation Terminology I

Subject group: Economics and Humanities – Faculty of Engineering Model curriculum number: 14 Code: MK3AVT1R01HX17-EN ECTS Credit Points: 2 Evaluation: mid-semester grade Year, Semester: 1st year, 1st semester Its prerequisite(s): -Further courses are built on it: Yes Number of teaching hours/week (lecture + practice): 0+2

Topics:

The course aims to provide future pilots with the English language proficiency needed for clear, accurate and problem-free communication without misunderstandings both in voice-only and face-to-face situations even in case of unexpected events. To achieve this, the improvement of General English and the sound acquisition of ICAO phraseology are both required.

Course content:

- 1. Introduction to air communication (clear communication, asking for repetition, questions-short answers, time expressions, ICAO)
- 2. Pre-flight (checks, delays, local conditions)
- 3. Ground movements (asking for more time, giving a reason,
- 4. Departure, climbing and cruising
- 5. Enroute events (explaining changes, unusual events, stating a problem)
- 6. Contact and approach (descent, saying what you are going to do)
- 7. Landing (landing hazards)
- 8. On the ground (getting to the gate)

Literature:

Compulsory:

- Sue Ellis-Terence Gerighty: English for Aviation for Pilots and Air Traffic Controllers. Express Series. Oxford Business English. OUP. 2008.ISBN: 978 0 19 457943 8
- Philip Shawcross: Flightpath, Aviation English for Pilots and ATCos. Cambridge Professional English. CUP. 2011.ISBN: 978-0521178716

Recommended:

Henry Emery - Andy Roberts: Aviation English Macmillan 2008. ISBN: 978 0 23 002757

1 st week Registration week	
2 nd week:	3 rd week:
Practice: Introduction to air communication : ICAO alphabet and numbers. Basics of radiocommunication, asking for repetition.	Practice: Introduction of non-routine situations, imaginary situations. Pre-flight checks, asking for more time.
4 th week:	5 th week:
Practice: Delays and problems: giving a reason. Pre-flight: local conditions, requesting actions.	Practice: Ground movements: airport markings and airside vehicles. Taxiing and holding.
6 th week:	7 th week:
 6th week: Practice: Weather problems. Departure, climbing and cruising: take-off, checking and asking for an alternative. 	7th week: Practice: Encountering traffic, prepositions of positions. Warnings about hazards, giving reasons.
Practice: Weather problems. Departure, climbing and cruising: take-off, checking and	Practice: Encountering traffic, prepositions of positions. Warnings
Practice: Weather problems. Departure, climbing and cruising: take-off, checking and asking for an alternative.	Practice: Encountering traffic, prepositions of positions. Warnings

11th week:

Practice: Weather conditions, explaining changes in plans. Approach and landing problems, requests.

13th week:

Practice: Landing hazards. On the ground, incidents between landing and arrival at the stand.

15th week: 2nd drawing week

Requirements

A, for a signature:

Participation at **practice classes** is compulsory. Students must attend the practice classes and may not miss more than three classes during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students cannot make up any practices with other groups. Attendance at practice classes will be recorded by the practice leader. Being late counts as an absence. In case of more than three absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date previously discussed with the tutor.

B, for grade:

The course ends in mid-semester grade based on the assessment of the instructor.

Informatics for Engineers I

Subject group: Specific Compulsory Subjects – Faculty of Engineering Model curriculum number: 18 Code: MK3INFEA04RX17-EN ECTS Credit Points: 4 Evaluation: mid-semester grade Year, Semester: 1st year, 1st semester Its prerequisite(s): -Further courses are built on it: No Number of teaching hours/week (lecture + practice): 2+2

Topics:

Lecture:

Number systems, number representations, and character codes (ASCII, UNICODE). Database models (hierarchical, network, ER, relational, object-oriented), normalization $(1^{st}, 2^{nd}, 3^{rd}, Boyce-Codd, 4^{th}, 5^{th}$ normal forms). Databases (hierarchical, network,

12th week:

Practice: Landing: landing incidents. Circuit joining.

14th week:

Practice: Getting to the gate. Clear communication, the future of flight.

relational, object-oriented, OLTP, OLAP) The Structured Query Language. Data structures (set, array, list, record, tree, file). Searching algorithms (full, linear, binary). Sorting algorithms (selection, bubble, insertion, quick). Computer programing (basic concepts, pseudo-code, flowchart, development models, data types, variable declarations, control structures, loops ...). Data compression (lossless and lossy compression algorithms). Data security (symmetric and asymmetric cyphers)

Practice:

We are implementing a real-world project, from data acquisition through the process of data to graphical results.

LabVIEW – for data acquisition and data storing

Excel and VBA Macros – for data process and graphical display

Literature:

Recommended:

- Microsoft Excel 2016 Bible: The Comprehensive Tutorial Resource
- Microsoft VBA 2016 Bible: The Comprehensive Tutorial Resource
- Jennings Richard: LabVIEW Graphical Programming, Fifth Edition

1 st week Registration week	
2 nd week:	3 rd week: Excel 2.
 Lecture: Number systems, number representations, character codes Practice: Introduction to the course project Measurement System for electric motors LabVIEW simulated signal generating 	 Lecture: Database models Practice: LabVIEW DAQmx Signal processing Storing data in a measurement file
 4th week: Excel 3. Lecture: Database model normalization, databases Practice: Importing data into Excel import from file (.txt, .csv, .lvm) 	 5th week: Excel 4. Lecture: SQL Practice: Excel data processing Analyzing data: Ordering, summarizing, a range. Filter a range. Summarize data with subtotals.
6 th week: Excel 5. Lecture: Data structures (set, array, list, record)	7th week: Excel 6. Lecture: Data structures (graph, tree, file) Practice: Excel data representation

 Practice: Excel data processing Formulas: Building Formulas. Move or copy a Formula. Reference Range or Sheet Conditional and database functions: IF, SUMIF CHOOSE VLOOKUP, HLOOKUP, INDEX, MATCH 	 Graphical representation in Excel: Creating Charts. Chart types. Chart Elements. Format and customize Excel Charts Practising for the Midterm test
8 th week: 1 st drawing week: Midterm test	1 oth was du MDA 2
 9th week: VBA 1. Lecture: Searching algorithms Practice: Automation of data processing with VBA Visual Basic for Applications (VBA) basics Variables. Data-Types Constants 11th week: VBA 3. Lecture: Computer programing (basic concepts, pseudo-code, flowchart, development models) Practice: Automation of data processing with VBA Arrays 	 10th week: VBA 2. Lecture: Sorting algorithms Practice: Automation of data processing with VBA Arithmetic Operators Logical Operators. Comparison Operators String Operators 12th week: VBA 4. Lecture: Computer programming (datatypes, variable declarations, control structures, loops) Practice: Automation of data processing with VBA Range Object Cell Property
 13th week: VBA 5. Lecture: Data compression (examples of lossless and lossy compression algorithms) Practice: Automation of data processing with VBA Subroutine Function 	14 th week: VBA 6. Lecture: Data security (examples of symmetric and asymmetric cyphers) Practice: Practising for the Endterm test

- Return
- Call

15th week: 2nd drawing week: Endterm test

Requirements

A, for a signature:

Regular attendance (Minimum 70 %). Successful accomplishment of homework.

B. Requirements for the grade:

Grades will be calculated as the average of midterm and endterm tests. Minimum requirements to pass the semester: Minimum 50% on both tests.

Basics of Aviation I

Subject group: Specific Compulsory Subjects – ATP(A) Model curriculum number: 25 Code: MK3PPL1R02HX17-EN ECTS Credit Points: 2 Evaluation: mid-semester grade Year, Semester: 1st year, 1stsemester Its prerequisite(s): -Further courses are built on it: Yes Number of teaching hours/week (lecture + practice): 2+1

Topics:

The course teaches the basic knowledge of aviation in order to assist students in understanding the key subsystems and their interrelations. The aim is to prepare the students for conducting the first flight trainings while having the relevant basic information about the environment the pilots are working in.

Part I of the course covers the following main areas and with airport and PHARMAFLIGHT training center visits give practical thorough information on: the most important stakeholders (airline, airport, airspace, air traffic management, maintenance, training organizations), international organizations and the regulatory environment, the tasks of the individual players, the basic requirements applying to them, airlines and airport organizational structures and their main operational documents

By completing both parts of the course, students will have a basic theoretical and practical knowledge necessary for the first summer flying where they will have the opportunity to make an intense flight programme.

Literature:

Recommended:

- Alexander T. Wells, Ed.D. & Seth Young, Ph.D. (2011): Airport Planning and Management, 6th Edition, ISBN-13: 978-0071750240, ISBN-10: 007175024X
- Massoud Bazargan (2016): Airline Operations and Scheduling, 2nd Edition, ISBN-13: 978-0754679004, ISBN-10: 0754679004

1 st week Registration week	
2 nd week:	3 rd week:
Practice: Basics of Air Law: Conventions, Agreements, Organizations	Practice: Basics of Air Law: Airworthiness of aircraft, Aircraft nationality and Registration marks, Personnel licensing
4th week: Basics of Air Law: Rules of the air,	5 th week:
Air Traffic Services and Air Traffic Management	Practice: Basics of Air Law: Aerodromes
6 th week:	7 th week:
Practice: Basics of Operational Procedures: General Requirements I.	Practice: Basics of Operational Procedures: General Requirements II.
8 th week: 1 st drawing week	
9 th week:	10 th week:
9th week: Practice: Basics of Operational Procedures: Special operational procedures and hazards	10 th week: Practice: Basics of Human Performance and Limitations: Human factors I.
Practice: Basics of Operational Procedures:	Practice: Basics of Human Performance
Practice: Basics of Operational Procedures: Special operational procedures and hazards	Practice: Basics of Human Performance and Limitations: Human factors I.
Practice: Basics of Operational Procedures: Special operational procedures and hazards 11 th week: Practice: Basics of Human Performance and	 Practice: Basics of Human Performance and Limitations: Human factors I. 12th week: Practice: Basics of Human Performance and Limitations: Basics of flight
 Practice: Basics of Operational Procedures: Special operational procedures and hazards 11th week: Practice: Basics of Human Performance and Limitations: Human factors II. 	 Practice: Basics of Human Performance and Limitations: Human factors I. 12th week: Practice: Basics of Human Performance and Limitations: Basics of flight psychology

Requirements

A, for a signature:

For the general rules for ATO course, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

B, for grade:

For the general rules for ATO course, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

Theoretical Knowledge of Airline Transport Pilot Licence I (ATPL)

Subject group: Professional Compulsory Subjects – ATP(A) Model curriculum number: 26 Code: MK3TKA1R03HX17-EN ECTS Credit Points: 3 Evaluation: mid-semester grade Year, Semester: 1st year, 1stsemester Its prerequisite(s): -Further courses are built on it: Yes Number of teaching hours/week (lecture + practice): 6+0

Topics:

The course (Part I, II and III together) teaches the basic knowledge of Principle of Flight to demonstrate a level that grants a successful authority exam according to FCL.515 ATPL — Training course and theoretical knowledge examinations.

Part I of the course covers the following main areas and give thorough information on:

The basic aerodynamic theory, subsonic aerodynamics, drag and wake, the lift coefficient Cl, the drag coefficient Cd, the stall, flaps and spoilers.

By conducting all Part of the course the student will have the knowledge recommended by the EU legislation (AMC1 FCL.310; FCL.515 (b); FCL.615 (b) and will understand the complex low speed aerodynamics of aeroplanes.

Learning Objectives (LOs) published by the European Commission are used when developing the Part-FCL theoretical knowledge elements of the course.

The course aims to contribute to the achievement of safe flight during their proposed pilot career. It is crucial for a pilot to be able to recognize hazards during a flight and to apply the right procedures in such cases.

Literature:

Compulsory:

• CAE OXFORD AVIATION ACADEMY (UK), Principles of Flight, 2015, ISBN: 978 1 90620 276 7

Schedule

1 st week Registration week	
2 nd week:	3 rd week:
Lecture and Practice: Basics, laws and definitions	Lecture and Practice: The atmosphere
4 th week:	5 th week:
Lecture and Practice: Basic Aerodynamic theory	Lecture and Practice: Subsonic airflow
6 th week:	7 th week:
Lecture and Practice: Lift	Lecture and Practice: Drag
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture and Practice: Stall	Lecture and Practice: C _{Lmax} augmentation
11 th week:	12 th week:
Lecture and Practice: High lift devices	Lecture and Practice: Airframe contamination
13 th week:	14 th week:
Lecture and Practice: Propellers	Lecture and Practice: Summary and revision questions

15th week: 2nd drawing week

Requirements

A, for a signature:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

B, for grade:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

2nd semester

Mathematics II

Subject group: Basic Natural Sciences – Faculty of Engineering Model curriculum number: 2 Code: MK3MAT2A06GX17_EN, MK3MAT2A06EX17_EN, MK3MAT2A06RX17_EN ECTS Credit Points: 6 Evaluation: mid-semester grade Year, Semester: 1st year, 2nd semester Its prerequisite(s): Mathematics I Further courses are built on it: Yes Number of teaching hours/week (lecture + practice): 2+4

Topics:

Differentiation and integration of multivariable and vector-valued functions, differential equations.

Part A: Differentiation and integration of multivariable vector-valued functions (2 hours lecture+2 hours practise/week): Metric, topology, sequences in the space. Linear functions. Parametric curves. Notions of differentiation, linear approximation, curvature, torsion. Parametric surfaces, tangent plane, linear approximation. Surfaces of revolution, ruled surfaces. Scalar field, gradient. Young's theorem. Directional derivative. Local and global extrema. Vector fields. Derivatives. Divergence and curl. Potential function. The notion of double and triple integrals on 2 and 3 dimensional intervals. The extensions of the integrals. Integrals over general regions. The arc length of curves, surface area. Line and surface integrals. The theorems of Gauss and Stokes, Green's formulae. Applications in physics.

Part B: Differential equations (2-hour practice/week): Notions of differential equations, classification of differential equations, initial value problem. Problems leading to differential equations. First order linear differential equations (homogeneous and inhomogeneous, method of variation). Determination of solutions of inhomogeneous first order linear differential equations. Solution of linear homogeneous differential equations. Higher order linear differential equations. Solution of linear homogeneous differential equations of order two having constant coefficients. Method of undetermined coefficients. Special second order differential equations. The Laplace transform and its applications. Slope fields, numerical methods. (Euler, Runge-Kutta).

Literature:

Required:

Recommended:

- Thomas' Calculus, Addison Wesley (11th edition, 2005), ISBN: 0-321-24335-8
- S. Minton, Calculus Concept and Connections, McGraw Hill (2006), ISBN 0-07111200-6
- M. D. Greenberg, Fundamentals of engineering analysis, Cambridge University Press, ISBN 978-0-521-80526-1

Recommended textbook:

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Part A: Metric, topology, sequences in \mathbb{R}^n .	Lecture:
Practice: Part A: Limits of vector sequences Part B: Notions of differential equations	Part A: Parametric curves I. Practice: Part A: Differentiation.
	Part B: Problems leading to differential equations.
4 th week:	5 th week:
Lecture:	Lecture:
Part A: Parametric curves II. Practice:	Part A: Differentiable functions of type $\mathbb{R}^n ightarrow \mathbb{R}^m$.
Part A: Curvature, torsion	Practice:
Part B: First order linear differential equations	Part A: Derivatives of functions of type $\mathbb{R}^n \rightarrow \mathbb{R}^m$.
equations	Part B: Higher order linear differential equations.
6 th week:	7 th week:
Lecture:	Lecture:
Part A: Parametric surfaces	Part A: Scalar field, gradient. Young's theorem. Directional derivative.
Practice:	Practice:
Part A: Surfaces of revolution	

Part B: Solution of linear homogeneous differential equations of order two having constant coefficients	Part A: The domains of functions of type $\mathbb{R}^2 \rightarrow \mathbb{R}$. Directional derivative and gradient.
	Part B: Summary, sample test
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture:	Lecture:
Part A: Local and global extrema	Part A: Vector fields
Practice:	Practice:
Part A: Local extremas of functions of type	Part A: Vector fields
$\mathbb{R}^2 \to \mathbb{R}$, $\mathbb{R}^3 \to \mathbb{R}$.	Part B: Special second order differential
Part B: Method of undetermined coefficients	equations.
11 th week:	12 th week:
Lecture:	Lecture:
Part A: Double and triple integrals	Part A: Integrals over general regions
Practice:	Practice:
Part A: Integrals on 2 and 3 dimensional	Practice: Part A: Applications
Part A: Integrals on 2 and 3 dimensional intervals	
Part A: Integrals on 2 and 3 dimensional intervals Part B: Laplace transform	Part A: Applications Part B: Slope fields, numerical methods.
Part A: Integrals on 2 and 3 dimensional intervals	Part A: Applications
Part A: Integrals on 2 and 3 dimensional intervals Part B: Laplace transform	Part A: Applications Part B: Slope fields, numerical methods.
Part A: Integrals on 2 and 3 dimensional intervals Part B: Laplace transform 13 th week:	Part A: Applications Part B: Slope fields, numerical methods. 14 th week:
Part A: Integrals on 2 and 3 dimensional intervals Part B: Laplace transform 13 th week: Lecture:	Part A: Applications Part B: Slope fields, numerical methods. 14 th week: Lecture:
Part A: Integrals on 2 and 3 dimensional intervals Part B: Laplace transform 13th week: Lecture: Part A: Line and surface integrals. Practice: Part A: arc length of curves, surface area.	Part A: Applications Part B: Slope fields, numerical methods. 14 th week: Lecture: Part A: Mathematical software Practice: Part A: Summary, sample test
Part A: Integrals on 2 and 3 dimensional intervals Part B: Laplace transform 13th week: Lecture: Part A: Line and surface integrals. Practice: Part A: arc length of curves, surface area. Line and surface integrals	Part A: Applications Part B: Slope fields, numerical methods. 14 th week: Lecture: Part A: Mathematical software Practice:
Part A: Integrals on 2 and 3 dimensional intervals Part B: Laplace transform 13th week: Lecture: Part A: Line and surface integrals. Practice: Part A: arc length of curves, surface area.	Part A: Applications Part B: Slope fields, numerical methods. 14 th week: Lecture: Part A: Mathematical software Practice: Part A: Summary, sample test

Requirements

A, for a signature and mid-semester grade:

Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three practice classes during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students can't take part in any practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented.

The final grade can be obtained in the following way:

- students write a mid-term test (Test I, B) from differential equation part of the material in the first drawing week; maximum 30 points can be achieved
- students write a mid-term test (Test I, A) from the differential and integral calculus part of the material in the first drawing week; maximum 50 points can be achieved
- students write an end-term test (Test II, B) from the differential equation part of the material in the second drawing week; maximum 30 points can be achieved
- students write an end-term test (Test II, A) from the differential and integral calculus part of the material in the second drawing week; maximum 50 points can be achieved

Mark ranges after the four tests:

144-160 points: excellent (5)
128-143 points: good (4)
104-127 points: satisfactory (3)
80-103 points: sufficient (2)
0-79 points: insufficient (1)

Those who fail, or do not accept their marks, can write a Test in any of the first three weeks of the exam period. This Test is a combination of the previous four tests, maximum 80 points can be achieved, and the mark ranges are proportional to the above table.

For exam dates check the Neptun system. If someone does not accept her/his mark, it is possible to get any mark (better, the same, or worse) than the original mark by writing this Test.

Mathematics Comprehensive Exam

Subject group: Basic Natural Sciences – Faculty of Engineering Model curriculum number: 3 Code: MK3MATSA00RX17-EN ECTS Credit Points: 0 Evaluation: exam Year, Semester: 1th year, 2nd semester Its prerequisite(s): Mathematics I, Mathematics II at the same time Further courses are built on it: No Subjects of the comprehensive exam: Mathematics I and II

Dynamics and Vibrations

Subject group: Basic Natural Sciences – Faculty of Engineering Model curriculum number: 6 Code: MK3MREZG04XX17-EN ECTS Credit Points: 4 Evaluation: exam Year, Semester: 1st year, 2nd semester Its prerequisite(s): Engineering Physics, Mathematics I Further courses are built on it: No Number of teaching hours/week (lecture + practice): 2+2

Topics:

Motion of a particle:

Position, velocity and acceleration and the mathematical relations between them, description of the motion of the particle in Cartesian coordinate system and Frenet-frame, Newton's laws and differential equation of the motion of the particle, theorems of kinetics, force fields, kinetic, potential and mechanical energy, constrained motion along a two or three dimensional curve

Motion of a rigid body:

Description of the translational, rotational and general plane motion of a rigid body, the concept and determination of the instantaneous centre of zero velocity and acceleration, rolling motion without slipping, description of the plane motion of a rigid body in a time interval, centre of mass, momentum and angular momentum, moment of inertia and its calculation, mechanical work, Newton's laws and theorem of kinetics for rigid bodies, rotating and swinging of the body about an axis, rolling without slipping

Vibrations:

Description and classification of vibratory motions and vibrating systems. Basic definitions and properties of vibratory motion. Investigation of the elements of vibrating systems: masses and inertial elements, flexible and damping elements. Investigation of the dynamic models. Two ways for the generation of motion equations: the D'Alembert's principle and the Lagrange equations of motion. Investigation and properties of the free vibrations of single DOF undamped and damped systems. Solution of the homogenous motion equation. Investigation and properties of single DOF undamped and properties of the forced vibrations of single DOF undamped and properties of the forced vibrations of single DOF undamped and damped systems. Basic types of forced vibrating systems. Multiple DOF systems:

introduction, basic properties, natural frequencies and modes, modal transform and decoupling.

Literature:

Compulsory:

- Russel C. Hibbeler: Engineering Mechanics Statics and Dynamics, Prentice Hall, 2006. ISBN-13 9780132215091
- Jerry Ginsberg: Engineering Dynamics, 3rd edition, Cambridge University Press, 2007. ISBN-13: 978-0521883030
- Lakshmana C. Rao, J. Lakshminarasimhan, Raju Sethuraman, Srinivasan M. Sivakumar: Engineering Mechanics: Statics and Dynamics, PHI Learning Pvt. Ltd., 2004. ISBN 8120321898, 9788120321892
- Meirovitch, Leonard: Fundamentals of Vibration, McGraw-Hill Publishing Company, 2000. ISBN 0071181741

Recommended:

- Ferdinand P. Beer, E. Russell Johnston, Jr.: University of Connecticut, Mechanics for Engineers: Statics and Dynamics (Package), 4th Edition, ©1987, ISBN-13 9780070045842
- Joseph F. Shelley: 700 solved problems in vector mechanics for engineers, Volume II: Dynamics. (SCHAUM'S SOLVED PROBLEM SERIES), McGraw-Hill, 1990. ISBN 0-07-056687-9

Schedule

1st week Registration week

2nd week:

Lecture: Kinematics of a particle

Scalar and vector position, velocity and acceleration and the mathematical relations between them. Description of the motion in Cartesian coordinate system and Frenet-frame. Special motion types: Motion with constant acceleration, circular motion.

Practice: Particle kinematics problems

4th week:

Lecture: Kinetics of a particle II

Formulas for work and potential energy in homogeneous and central force fields. Motion of the particle in gravitational and elastic spring force fields. Constrained

3rd week:

Lecture: Kinetics of a particle I

Newton's laws and differential equation of the motion of the particle. Theorems of kinetics (impulse-momentum, work-energy and angular impulse-angular momentum theorems). Mechanical Power. Force fields (homogeneous, central and conservative). Kinetic, potential and mechanical energy.

Practice: Particle kinetics problems

5th week:

Lecture: Kinematics of a rigid body I

Basic concepts (rigid body and disc, planar, translational, rotational and general plane motion). Connections between the velocity and acceleration of the different points of a

motion along a two or three-dimensional curve. Practice: Particle kinetics problems II	rigid body undergoing translational, rotational and general plane motion. Instantaneous centre of zero velocity, acceleration, and procedure for the determination of them with calculation and construction. Practice: Rigid body kinematics problems
6 th week:	7 th week:
Lecture: Kinematics of a rigid body II Rolling motion without slipping. Description of the plane motion of a rigid body in a time interval. Pole curves. Practice: Rigid body kinematics problems	Lecture: Kinetics of a rigid body I Basic concepts: centre of mass, momentum and angular momentum, moment of inertia and its calculation, parallel axis theorem, mechanical work. Practice: Rigid body kinetics problems
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Kinetics of a rigid body II	Lecture:
Newton's laws and theorem of kinetics for rigid bodies (impulse-momentum, angular impulse-angular momentum and work- energy theorems). Special motion types: Rotating and swinging about an axis, rolling without slipping. Practice: Rigid body kinetics problems	Description and classification of vibratory motions and vibrating systems. Basic definitions and properties of vibratory motion. Investigation of the elements of vibrating systems: masses and inertial elements, flexible and damping elements. Practice: Reduction of masses. Replacement of rigid bodies by lumped masses. Reduction of springs and damping elements.
11 th week:	12 th week:
 Lecture: Investigation of the dynamic models. Two ways for the generation of motion equations: the D'Alembert's principle and the Lagrange equations of motion. Practice: Generating the equations of motion for single- and multiple degrees of freedom (DOF) systems. 	Lecture: Investigation and properties of the free vibrations of single DOF undamped and damped systems. Solution of the homogenous motion equation. Practice: Calculation problems related to the free vibrations of single DOF undamped and damped systems.
13 th week:	14 th week:
Lecture: Investigation and properties of the forced vibrations of single DOF undamped	Lecture: Multiple DOF systems: introduction, basic properties, natural

and damped systems. Basic types of forced vibrating systems.

Practice: Calculation examples of several kinds of forced vibrations in case of single DOF undamped and damped systems.

15th week: 2nd drawing week

Requirements

A, for a signature:

Participation at lectures and seminars is compulsory. Students must attend lectures and seminars and may not miss more than three of them during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at lectures and seminars will be recorded by the lecturer. Being late counts as an absence. In case of further absences, a medical certification needs to be presented. Missed lectures must be made up for at a later date, being discussed with the tutor.

Students have to write two midterm tests during the semester. The first (40 points max) in the 8th, the second (40 points max) in the 14th week. At the end of the semester everybody will get a seminar grade on the basis of the table below:

0-39 = Fail (1); 40-50 = Close fail (2); 51-60 = Improvement needed (3); 61-70 = Very good (4); 71-80 = Excellent (5)

If somebody fails then he has to write both tests in the 1st week of the exam period again. If the result is 40 points (50%) or better, then he can take an exam. If somebody has to repeat his midterm tests then his seminar grade cannot be better than (2).

There will be homework from week to week. Only students who have handed in all their homework at the time of the midterm test will be allowed to write it. The problems in the midterm tests will be selected from the homework assignments.

B, for a grade:

Everybody will get an exam grade for their exam. The final grade will be the average of the seminar and exam grade. If it is for example (3.5) then the lecturer decides if it is (3) or (4).

Thermodynamics and Fluid Mechanics II

Subject group: Basic Natural Sciences – Faculty of Engineering Model curriculum number: 8 Code: MK3THE2R04HX17-EN ECTS Credit Points: 4 Evaluation: exam Year, Semester: 1st year, 2nd semester Its prerequisite(s): Thermodynamics and Fluid Mechanics I

frequencies and modes, modal transform and decoupling.

Practice: Calculation problems related to the free and forced vibrations of multiple DOF undamped and damped systems.

Further courses are built on it: No Number of teaching hours/week (lecture + practice): 2+2

Topics:

Introduce concepts, principles, laws, observations, and models of fluids at rest and in motion. Provide basis for understanding fluid behavior and for engineering design and control of fluid systems. Develop competence with mass, energy and momentum balances for determining resultant interactions of flows and engineered and natural systems. Develop basis for correlating experimental data, designing tests, and using scale models of fluid flows. Learn nature of rotation, circulation, resistance (viscous, turbulent), boundary layers, and separation with applications to drag and lift on objects. Wing profile. Mach number. Principles of flights. Learn methods for computing headlosses and flows in simple pipes and channels.

Literature:

Compulsory:

- Lakatos Á. Basics of Heat Transfer and Fluid Mechanics. 2014, Terc Kft.
- Bruce R. Munson, Donald F. Young, Theodore H. Okiishi, (2009) Fundamentals of Fluid Mechanics, John Wiley and Sons, ISBN 978-0470262849, 776 pages
- Robert W. Fox, Alan T. McDonald, Robert W Fox, (1998) John Wiley and Sons, ISBN 978-0471124641, 762 pages
- Shashi Menon (2004) Piping Calculations Manual, ISBN 978-0071440905 666 pages

1 st week	Registration week
----------------------	-------------------

 2nd week: Introduce concepts, principles, laws, observations, and models of fluids at rest and in motion Lecture: Provide basis for understanding fluid behavior and for engineering design and control of fluid systems. Practice: Solving problems in the theme of the lecture 	 3rd week: Lecture: Develop competence with mass balances for determining resultant interactions of flows and engineered and natural systems. Practice: Solving problems in the theme of the lecture
4 th week:	5 th week:
Lecture: Develop competence with energy	Lecture: Develop competence with
balances for determining resultant	momentum balances for determining
interactions of flows and engineered and	resultant interactions of flows and
natural systems.	engineered and natural systems.

 Practice: Solving problems in the theme of the lecture 6th week: Lecture: Develop basis for correlating experimental data, designing tests, and using scale models of fluid flows. Practice: Solving problems in the theme of the lecture 	 Practice: Solving problems in the theme of the lecture 7th week: Lecture, practice: Solving problems in the theme of the lecture
8 th week: 1 st drawing week	
9 th week: Lecture: Learn nature of rotation, circulation, resistance (viscous, turbulent), boundary layers, and separation with	10th week: Lecture: Learn methods for computing headlosses and flows in simple pipes and channels.
applications to drag and lift on objects. Mach number	Practice: Solving problems in the theme of the lecture
Practice: Solving problems in the theme of the lecture	
11 th week:	12 th week:
Lecture: Navier- Stokes equation	Lecture: Losses in pipes. Dag. Lift.
Practice: Solving problems in the theme of the lecture.	Practice: Solving problems in the theme of the lecture
13 th week:	14 th week:
Lecture: Bernoulli equation. Wing profile.	Lecture: Law of impulse and momentoum.
Practice: Solving problems in the theme of the lecture	Practice: Solving problems in the theme of the lecture
15 th week: 2 nd drawing week	

Requirements

A, for a signature:

Attendance on the lectures is recommended, but not compulsory.

Participation at practice is compulsory. Student must attend the practices and my not miss more than three practice during the semester. In case a student misses more than three, the subject will not be signed and the student must repeat the course. Student cannot make up a practice with another group. The attendance on practice will be recorded by the practice leader. Being late is counted as an absence. In case of more than three absences, a medical certificate needs to be presented. Missed practices should be made up for at a later date previously discussed with the tutor. Students are required to bring the drawing tasks and drawing instruments for the course with them to each practice. Active participation is evaluated by the teacher in every class. If student's behavior or conduct does not meet the requirements of active participation, the teacher may evaluate their participation as an absence due to the lack of active participation in class.

During the semester there are two tests: the mid-term test is in the 8th week and the end-term test in the 15th week. Students have to sit for the tests.

B, for grade:

The course ends with exam grade. Based on the average of the test results x 0.3 + the exam grade from the theory x 07 the mid-semester grade is calculated as an average of them:

The minimum requirement for the mid-term, end-term tests and for the exam is 50%. Based on the score of the tests separately, the grade for the tests is given according to the following table:

Score / Grade

0-50 = fail (1); 51-60 = pass (2); 61-74 = satisfactory (3); 75-89 = good (4); 90-100 = excellent (5);

Aviation Terminology II

Subject group: Economics and Humanities – Faculty of Engineering

Model curriculum number: 15

Code: MK3AVT3R01HX17-EN

ECTS Credit Points: 2

Evaluation: mid-semester grade

Year, Semester: 1st year, 2nd semester

Its prerequisite(s): Aviation Terminology I

Further courses are built on it: No

Number of teaching hours/week (lecture + practice): 0+2

Topics:

The course aims to provide future pilots with the English language proficiency needed for clear, accurate and problem-free communication without misunderstandings both in voice-only and face-to-face situations even in the case of unexpected events. To achieve this the improvement of General English and the sound acquisition of ICAO phraseology are both required.

Course content:

- 1. Runway incursion, airport layout, ground operations
- 2. Co-ordinates, topographical features
- 3. Technology: datalink, flight control systems, instrument panel
- 4. Animals: wildlife on the ground, animals on the loose, bird strike
- 5. Gravity: manoeuvring an aircraft, hydraulic loss
- 6. Health: medical emergencies

- 7. Fire, on-board fire
- 8. Meteorology
- 9. Landings
- 10. Fuel
- 11. Pressure: blast, emergency descent
- 12. Security

Literature:

Compulsory:

- Sue Ellis-Terence Gerighty: English for Aviation for Pilots and Air Traffic Controllers. Express Series. Oxford Business English. OUP. 2008.ISBN: 978 0 19 457943 8
- Philip Shawcross: Flightpath, Aviation English for Pilots and ATCos. Cambridge Professional English. CUP. 2011.ISBN: 978-0521178716

Recommended:

Henry Emery - Andy Roberts: Aviation English Macmillan 2008. ISBN: 978 0 23 002757

1st week Registration week	
2 nd week:	3 rd week:
Practice: Avoiding miscommunication, asking for information, airport layout. Ground operations, describing actions and position.	Practice: Explaining abbreviations, co- ordinates words. Confirming and disconfirming, topographical features.
4 th week:	5 th week:
Practice: Technology: datalink, flight control systems. The instrument panel, instrument blackout.	Practice: Animals: wildlife on the ground, animals on the loose. Bird strike, cargo words.
6 th week:	7 th week:
Practice: Gravity: manoeuvring an aircraft, comparing and contrasting. Aerobatics: units of measurement, hydraulic loss.	Practice: Health: medical emergencies vocabulary. Symptoms of stress, making suggestions and giving advice.
8th week: 1st drawing week	
9 th week:	10 th week:
Practice: Fire: words for describing fire, collocations related to fire. On-board fire: identifying and responding problems, electrical problems vocabulary.	Practice: Meteorology: microburst. Airport disruption, weather words.
11 th week:	12 th week:
Practice: Landings: touchdown, describing sensory impressions, landing gear and	

braking words. Describing 3-D position and movement, undercarriage: resolving misunderstanding.	Practice: Aviation and global warming, suggesting solutions to problems. Fuel icing, fuel collocations.
13 th week:	14 th week:
Practice: Pressure: blast, emergency descent. Damage, types of damage, expressing consequences.	Practice: Security: air rage, focusing on actions. Suspicious passengers, words for strange behaviour, unlawful interference.
15th week: 2nd drawing week	

Requirements

A, for a signature:

Participation at **practice classes** is compulsory. Students must attend the practice classes and may not miss more than three classes during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students cannot make up any practices with other groups. Attendance at practice classes will be recorded by the practice leader. Being late counts as an absence. In case of more than three absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date previously discussed with the tutor.

B, for grade:

The course ends in mid-semester grade based on the assessment of the instructor.

Aircraft Technology

Subject group: Professional Compulsory Subjects – Faculty of Engineering Model curriculum number: 17 Code: MK3AIRCR04HX17-EN ECTS Credit Points: 4 Evaluation: exam Year, Semester: 1st year, 2nd semester Its prerequisite(s): Engineering Physics, Basics of Aviation I Further courses are built on it: Yes Number of teaching hours/week (lecture + practice): 2+2

Topics:

The course teaches the basic knowledge of Aircraft technology in order to gain the prerequisite knowledge for Aircraft General Knowledge — Airframe/Systems/Powerplant I and II subjects.

The course covers the following main areas and give basic information on system design, loads, stresses and maintenance, airframe, hydraulics, landing gear, wheels, tyres and

brakes, flight controls, pneumatics: pressurisation and air conditioning, anti and de-icing systems, fuel system, protection and detection systems, oxygen systems.

By completing the course, students will gain a basic knowledge necessary to commence Aircraft General Knowledge — Airframe/Systems/Powerplant I and II subjects described by the EU legislation (AMC1 FCL.310; FCL.515 (b); FCL.615 (b) and will understand the basic technological background, structures, simple solutions used in airframes, systems and powerplants in aviation.

Learning Objectives (LOs) published by the European Comission are used when developing the Part-FCL theoretical knowledge elements of the course.

The course aims to contribute to the achievement of safe flight during their proposed pilot career. It is crucial for a pilot to be able to recognize hazards during a flight and to apply the right procedures in such cases.

Literature:

Compulsory:

- CAE OXFORD AVIATION ACADEMY (UK), Airframes and Systems, 2015, ISBN: 978 1 90620 265 1
- CAE OXFORD AVIATION ACADEMY (UK), Electrics and electronics, 2015, ISBN: 978 1 90620 266 8

CAE OXFORD AVIATION ACADEMY (UK), Powerplant, 2015, ISBN: 978 1 90620 267 5

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Systems, loads, stress, maintenance, Structure	Lecture: Wings, empennage, control surfaces, Fuselage, doors, floor,
Practice: Lab demonstration, Loads and stresses	windshield, windows, Control surface types
	Practice: Site visit, aircraft demonstration
4 th week:	5 th week:
Lecture: Hydraulic, Hydraulic systems,	Lecture: Brakes, Wheels and tyres
Nose wheel steering: structure and operation	Practice: Lab demonstration, simplified systems
Practice: Lab demonstration, hydraulic fluids	
6 th week:	7 th week:
Lecture: Controls, Secondary controls, De- ice systems, Fuel systems	Lecture: Electric systems basics, Battery, Static electricity: general, Electric parts, Distribution
Practice: Site visit, aircraft demonstration	Practice: Lab demonstration and examples
	racioc. Las demonstration and examples

Schedule

8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Piston engines: general, Fuel, Carburetor and injector systems, Air conditioning	Lecture: Lubrication, Ignition, Mixture Practice: Lab demonstration
Practice: Site visit, aircraft demonstration	
11 th week:	12 th week:
Lecture: Propellers Practice: Performance examples	Lecture: Gas turbine engines: general, Fuel (jet), Engine components, Further components and systems
	Practice: Site visit, aircraft demonstration
13 th week:	14 th week:
Lecture: Performance aspects Practice: Performance examples	Lecture: Detection and protection systems, Other systems Practice: Operations presentation
15 th week: 2 nd drawing week	1

15th week: 2th drawing week

Requirements

A, for a signature:

Attendance at **lectures** is recommended, but not compulsory.

Participation at **practice classes** is compulsory. Students must attend the practice classes and may not miss more than three classes during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students cannot make up any practices with other groups. Attendance at practice classes will be recorded by the practice leader. Being late counts as an absence. In case of more than three absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date previously discussed with the tutor.

B, for grade:

The course ends in an examination.

Basics of Aviation II

Subject group: Professional Compulsory Subjects – ATP(A) Model curriculum number: 27 Code: MK3PPL2R03HX17-EN ECTS Credit Points: 4 Evaluation: mid-semester grade

Year, Semester: 1st year, 2nd semester

Its prerequisite(s): Basics of Aviation I Further courses are built on it: Yes Number of teaching hours/week (lecture + practice): 4+3

Topics:

The course teaches the basic knowledge of aviation in order to assist students in understanding the key subsystems and their interrelations. The aim is to prepare students for conducting the first flight trainings while having the relevant basic information about the environment the pilots are working in.

By completing Part II of the course, students will be acquainted with airport and airline environments, training regulations, dispatch procedures, pre-flight planning, training aircrafts, and post flight requirements including logbook maintenance and emergency procedures. In the first flight training hours, students will become familiar with the training aircraft, its operating characteristics, flight controls, basic instruments and system, general good operating techniques and safety procedures. After completing the course, students shall be able to conduct a pre-flight with assistance, use the checklist, perform a run-up check of engine and systems, and know how to use the controls to move the airplane about its respective axis. They will be familiar with the controls of the aircraft and the effect of them during flight and learn how to taxi for take-off and to the parking area after landing.

By completing both parts of the course, students will have a basic theoretical and practical knowledge necessary for the first summer flying where they will have the opportunity to make an intense flight programme.

Literature:

Recommended:

- CAE OXFORD AVIATION ACADEMY (UK), General Navigation, 2015, ISBN: 978 1 90620 273 6
- CAE OXFORD AVIATION ACADEMY (UK), Operational Procedures, 2015, ISBN: 978 1 90620 275 0
- CAE OXFORD AVIATION ACADEMY (UK), Mass and Balance Performance, 2015, ISBN: 978 1 90620 269 9

Schedule

1 st week Registration week	
2 nd week:	3 rd week:
Practice: Basics of Instrumentation: Sensors and instruments, Measurement of air data parameters, Gyroscopic instruments	Practice: Basics of Mass and Balance: Purpose of Mass and Balance considerations, Loading, Fundamentals of CG calculations
4th week:	5 th week:

Practice: Basics of Mass and Balance: Mass and Balance details of aircraft, determination of CG position	Practice: Basics of Performance: General
6 th week:	7 th week:
Practice: Basics of Performance: Single engine airplanes	Practice: Basics of Flight planning and monitoring: Flight planning for VFR flights
8 th week: 1 st drawing week	
9 th week: Practice: Basics of Flight planning and monitoring: Fuel planning	10 th week: Practice: Basics of General Navigation: Basics of navigation, magnetism and compasses, Charts
11 th week:	12 th week:
Practice: Basics of Radio Navigation: Basic radar principles, Radio aids	Practice: Basics of VFR Communication: Definitions, General operating procedures, Distress and Urgency procedures
13 th week:	14 th week:
Practice: Basics of Meteorology: The atmosphere, Wind, Thermodynamics	Practice: Basics of Meteorology: Clouds and fog, Precipitation, Flight hazards, Meteorological information

A, for a signature:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

B, for grade:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

Theoretical Knowledge of Airline Transport Pilot Licence II (ATPL)

Subject group: Professional Compulsory Subjects – ATP(A) Model curriculum number: 28 Code: MK3TKA2R02HX17-EN ECTS Credit Points: 1 Evaluation: mid-semester grade Year, Semester: 1st year, 2nd semester Its prerequisite(s): Theoretical Knowledge of Airline Transport Pilot Licence I (ATPL) Further courses are built on it: Yes Number of teaching hours/week (lecture + practice): 1+0

Topics:

The course (Part I, II and III together) teaches the basic knowledge of Principle of Flight to demonstrate a level that grants a successful authority exam according to FCL.515 ATPL — Training course and theoretical knowledge examinations.

Part II of the course covers the following main areas and give thorough information on:

Stability, Neutral point, Location of centre of gravity, The Cm– α graph, Cn– β graph, Cl– β graph, Control, Yaw (directional) control, Roll (lateral) control, Mass balance, Trimming

By conducting all Part of the course the student will have the knowledge recommended by the EU legislation (AMC1 FCL.310; FCL.515 (b); FCL.615 (b) and will understand the complex high speed aerodynamics of aeroplanes.

Learning Objectives (LOs) published by the European Commission are used when developing the Part-FCL theoretical knowledge elements of the course.

The course is aimed to contribute to the achievement of safe flight during their proposed pilot career. It is crucial that a pilot could be able to recognize the hazard and apply for the well-known procedures in this matter during a flight.

Literature:

Compulsory:

• CAE OXFORD AVIATION ACADEMY (UK), Principles of Flight, 2015, ISBN: 978 1 90620 276 7

Schedule

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Static stability	Lecture: Dynamic stability
6 th week:	7 th week:
Lecture: Dynamic lateral stability	Lecture: Dynamic directional stability
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Control - General	Lecture: Pitch (longitudinal) control
11 th week:	12 th week:
Lecture: Roll (lateral) control	Lecture: Means to reduce control forces

13th week: Lecture: Mass Balance 14th week: Lecture: Trimming

15th week: 2nd drawing week

Requirements

A, for a signature:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

B, for grade:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

Meteorology I (ATPL)

Subject group: Professional Compulsory Subjects – ATP(A) Model curriculum number: 29 Code: MK3MET1R02HX17-EN ECTS Credit Points: 2 Evaluation: mid-semester grade Year, Semester: 1st year, 2nd semester Its prerequisite(s): -Further courses are built on it: Yes Number of teaching hours/week (lecture + practice): 2+2

Topics:

The course (Part I and II together) teaches the basic knowledge of Meteorology to demonstrate a level that grants a succesful authority exam according to FCL.515 ATPL - Training course and theoretical knowledge examinations.

Part I of the course covers the following main areas and give thorough information on:

The atmosphere, pressure, density, pressure systems, synoptic charts, altimetry, temperature, humidity, adiabatics and stability, turbulence, wind, thermodynamics, clouds and fog, precipitation

By conducting both Part of the course the student will have the knowledge recommended by the EU legislation (AMC1 FCL.310; FCL.515 (b); FCL.615 (b) and will understand the

complex knowledge of meteorological conditions, different atmospheric structure and activities.

Learning Objectives (LOs) published by the European Comission are used when developing the Part-FCL theoretical knowledge elements of the course.

The course is aimed to contribute to the achievement of safe flight during their proposed pilot career. It is crucial that a pilot could be able to recognize the hazard and apply for the well-known procedures in this matter during a flight.

Literature:

Compulsory:

• CAE OXFORD AVIATION ACADEMY (UK), Meteorology, 2015, ISBN: 978 1 90620 272 9

Schedule

1 st week F	Registration	week
------------------------	--------------	------

2nd week:

Lecture: The atmosphere, Composition, extent, vertical division of the atmosphere, Air temperature, Definition and units, distribution of temperature, Vertical Transfer of heat. ICAO Standard Atmosphere (ISA), Altimetry, Terminology definitions. Altimeter and settings. Calculations, Effect of accelerated airflow due to topography

Practice: Calculation examples

4th week:

Lecture: Wind, Local winds, Anabatic and katabatic winds, mountain and valley winds, Venturi effects, land and sea breezes, Mountain waves (standing waves, lee waves), Origin and characteristics

Practice: Case studies on wind

6th week:

Lecture: Thermodinamics, Humidity, Water vapour in the atmosphere, Mixing ratio, Temperature/dew point, relative humidity, Change of state of aggregation,

3rd week:

Lecture: Wind, Definition and measurement of wind, Primary cause of wind, pressure gradient, Coriolis force, gradient wind, Variation of wind in the friction layer, Effects of convergence and divergence, General global circulation

Practice: Wind gradient calculations

5th week:

Lecture: Wind, Turbulence, Description and types, Formation and location of turbulence, Clear-Air Turbulence (CAT): Description, cause and location, Jet streams, Description, Formation and properties of jet streams, Location of jet streams and associated CAT areas, Jet stream recognition

Practice: Case studies on wind

7th week:

Lecture: Clouds and fog, Cloud formation and description, Cloud types and cloud classification, Influence of inversions on

freezing and melting, latent heat, Adiabatic each cloud t processes, Adiabatic processes, stability of the atmosphere Practice: Case studies on thermodynamics	type assification examples
8 th week: 1 st drawing week	
9 th week: 10 th week:	
General aspects, Radiation fog, Advection precipitation fog, Steam fog, Frontal fog, Orographic fog relationship	recipitation, Development of n, Types of precipitation, with cloud types
(hill fog)Practice: AirPractice: Case studies on clouds and fogvisit	port meteorological center site
11 th week: 12 th week:	
Description, classification and source General asp regions of air masses, Modifications of air Warm sec	r masses and fronts, Fronts, bects, Warm front, Cold front, tor associated clouds and eather behind the cold front
Practice: Case studies on air masses and fronts Practice: Case studies on air masses and fronts	ase studies on air masses and
13 th week: 14 th week:	
associated clouds and weather, Stationary front, associated clouds and weather, Movement of fronts and pressure systems, life cycle, Changes of meteorological elements at a frontal wave Practice: Case studies on air masses and fronts Production fronts	Pressure systems, principal reas, Location of the principal eas, Anticyclone, types, general cold and warm anticyclones, wedges, subsidence, Non- ressions, Thermal, orographic, econdary depressions; troughs, olving storms, se studies on storms
15 th week: 2 nd drawing week	

A, for a signature:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

B, for grade:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

Communication VFR (ATPL)

Subject group: Professional Compulsory Subjects – ATP(A) Model curriculum number: 30 Code: MK3COMVR01HX20-EN ECTS Credit Points: 1 Evaluation: authority exam Year, Semester: 1st year, 2nd semester Its prerequisite(s): -Further courses are built on it: No Number of teaching hours/week (lecture + practice): 1+0

Topics:

The course teaches the basic knowledge of Communication VFR to demonstrate a level that grants a successful authority exam according to FCL.515 ATPL — Training course and theoretical knowledge examinations.

The course covers the following main areas and give thorough information on:

General operating procedures, relevant weather information terms (VFR), action required to be taken in case of communication failure, distress and urgency procedures, general principles of VHF propagation and allocation of frequencies, morse code

By conducting the course the student will have the knowledge recommended by the EU legislation (AMC1 FCL.310; FCL.515 (b); FCL.615 (b) and will understand the legal background and basis of aviation, learn the structure and sources of the rules.

Literature:

Compulsory:

• CAE OXFORD AVIATION ACADEMY (UK), Communications, 2015, ISBN: 978 1 90620 277 4

Schedule

1st week Registration week

2nd week:

3rdweek:

Lecture:

VFR COMMUNICATIONS, CONCEPTS *Associated terms*:

Meanings and significance Air Traffic Services abbreviations, **Practice:** practical examples

4th week:

Lecture: VFR COMMUNICATIONS, GENERAL OPERATING PROCEDURES Transmission standards:

Transmission of letters Transmission of numbers Transmission of time **Practice:** practical examples

6th week:

Lecture: VFR COMMUNICATIONS, GENERAL OPERATING PROCEDURES

Transmission standards:

RT call signs for aeronautical stations including use of abbreviated call signs **Practice:** practical examples

8th week: 1st drawing week

9th week:

Lecture:

VFR COMMUNICATIONS, GENERAL OPERATING PROCEDURES

Transmission standards:

Read-back and acknowledgement requirements

Lecture:

VFR COMMUNICATIONS, CONCEPTS Associated terms:

Q-code groups commonly used in radiotelephony (RT) air – ground communications,

Categories of messages

Practice: practical examples

5th week:

Lecture:

VFR COMMUNICATIONS, GENERAL OPERATING PROCEDURES

Transmission standards:

Transmission techniques Standard words and phrases (relevant RTF phraseology included) **Practice:** practical examples

7th week:

Lecture:

VFR COMMUNICATIONS, GENERAL OPERATING PROCEDURES

Transmission standards:

RT call signs for aircraft including use of abbreviated call signs Transfer of communication Test procedures including readability scale

Practice: practical examples

10th week:

Lecture:

VFR COMMUNICATIONS, RELEVANT WEATHER INFORMATION Aerodrome weather:

Aerodrome weather terms, Weather broadcast

Radar procedural phraseology	Practice: practical examples
Level changes and reports	ructice, practical champles
Data link messages	
-	
Practice: practical examples	
11 th week:	12 th week:
Lecture:	Lecture:
VFR COMMUNICATIONS, VOICE	VFR COMMUNICATIONS, DISTRESS AND
COMMUNICATION FAILURE	URGENCY PROCEDURES
Required action:	Signals and procedures:
Action required to be taken in case of	Distress
communication failure	Urgency
Practice: practical examples	Practice: practical examples
13 th week:	14 th week:
Lecture:	Lecture:
VFR COMMUNICATIONS, VHF	VFR COMMUNICATIONS, OTHER
PROPAGATION AND ALLOCATION OF	COMMUNICATIONS
FREQUENCIES	Weather observations, Morse code:
General Principles:	
	Meteorological observations,
Spectrum, bands, range	Use of Morse code
Practice: practical examples	Practice: practical examples
15 th week: 2 nd drawing week	

A, for a signature:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

B, for grade:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

3rd semester

Electrotechnics and Electronics

Subject group: Basic Natural Sciences – Faculty of Engineering Model curriculum number: 9 Code: MK3ELTER06RX17-EN ECTS Credit Points: 6 Evaluation: mid-semester grade Year, Semester: 2nd year, 1st semester Its prerequisite(s): Mathematics I, Engineering Physics Further courses are built on it: Yes Number of teaching hours/week (lecture + practice): 2+2

Topics:

Introduction to DC circuits: voltage, current, basic components. Network analysis: Ohm's Law, Kirchhoff's Law, current and voltage divider, superposition, Thevenin and Norton's Law. Alternating current circuits: sinusoidal wave, calculation on the complex plane, power and effective values. Transient signals in the AC circuits: series and parallel RLC circuits. 3 phases circuit.

Introduction to electronics: features of electronic circuits, solid state devices. Transistors, unipolar and bipolar transistors. Operation, characteristics, and basic circuits. Amplifiers: 4 port theory, transfer functions, feedback: positive and negative. Semiconductors, diode, special diode. Common emitter amplifier. Differential amplifier: operational modes, circuit. Class A and AB amplifiers. Power amplifiers. Operational amplifiers: inverting and non-inverting type. Filters: Low and high pass filter, band pass filter.

Literature:

Compulsory:

• Electronic Circuits: Handbook for Design and Application, U. Tietze, Ch. Schenk, 2nd edition, 2008, ISBN-10: 3540004297

Schedule

1 st week Registration week	
2 nd week:	3 rd week:
electrical concepts of electric charge,	Lecture: Power source (ideal real), Power Source (ideal for real), Consumer, Ohm's Law, Resistance - design, characteristic data, division, marking according to IEC

electric field work, electric voltage (potential), electric circuit Practice: General description, laboratory regulations, Safety regulations and safety instruction	standard. Passive resistance of bipolar networks, Star-delta, delta-star conversion, Electrical work, electric power, efficiency Practice: introduction to measurements and instrumentation (measuring error, power supply, digital multimeter, signal generator)
4 th week:	5 th week:
Lecture: Network analysis: Kirchhoff's laws, Voltage divider, potentiometer, extending measuring range of a Volt meter current divider, extending measuring range of an Amp meter, Wheatstone bridge. Nodal analysis, Mesh analysis.	Lecture: Network analysis: superposition theory, Northon and Thevenin theory.Practice: Perform a complex DC measurement and calculation task. Report writing.
Practice: 1st measurement: measuring the characteristics of DC voltage (U, I, RB, P) using Ohm's Law. Measuring the values of DC circuit. Using Kirchhoff's lows. Report writing.	
6 th week:	7 th week:
Lecture: AC circuit, complex number, AC circuit mean value (RMS). Behavior of a resistance in AC circuit, inductance behavior in AC circuit, capacitance behavior in AC circuit.	Lecture: Performance of AC circuits, power factor correction, Three-phase systems Practice: measurements of AC power. Report writing.
Practice: introduction to AC measurements and instrumentation (AC type digital multimeter, signal generator, oscilloscope, LRC meter). Report writing.	
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Pure and doped semiconductor characteristics, PN junction behavior at forward and reverse bias conditions. Practice: Silicon diode opening and closing characteristics measurements. Analysis of rectifier circuits. Report writing.	Lecture: Characteristics and applications of semiconductor diodes, the rectifier circuit operation, the one-way, two-way rectifier circuits operation. Practice: Analysis of rectifier circuits. Report writing.
11 th week:	12 th week:
Lecture: Bipolar transistor structure, gain, transistor parameters and characteristics, the FE connection, adjusting the set point.	Lecture: Principles of operation of field-effect transistors.

Areas of application of bipolar transistor, circuits transistor basic (CB, CC circuits), Practice: Analysis of common emitter basic circuit. Report writing.	Practice: Analysis of common source basic circuit. Report writing.
13 th week:	14 th week:
Lecture: Operation and characteristics of basic operational amplifier circuits (inverting, non-inverting, follower, summing, differential, differentiator and integrator basic circuit)	Lecture: Filters: Low and high pass filter, band pass filter. Practice: Analysis of filters basic circuit. Report writing.
Practice: Analysis of summing operational amplifier basic circuit. Report writing.	
15 th week: 2 nd drawing week	

A, for a signature:

Attendance at lectures is recommended, but not compulsory. Participation at practice classes is compulsory. Students must attend the practice classes and may not miss more than three classes during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student cannot make up a practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late counts as an absence. Missed practice classes must be made up for at a later date, being discussed with the tutor. Active participation is evaluated by the teacher in every class. If student's behavior or conduct does not meet the requirements of active participation, the teacher may evaluate his/her participation as absence because of the lack of active participation in class. During the semester there are one test. Students have to sit for these tests.

Preparing measurement reports until deadline.

B, for grade:

At the end of the course a test must be taken. The minimum requirement for end-term test is 41%. Score Grade 0-40 fail (1) 41-55 pass (2) 56-70 satisfactory (3) 71-85 good (4) 86-100 excellent (5)

Descriptive Geometry

Subject group: Professional Compulsory Subjects – Faculty of Engineering Model curriculum number: 18 Code: MK3DEGRR04HX17-EN ECTS Credit Points: 4 Evaluation: mid-semester grade Year, Semester: 2nd year, 1st semester Its prerequisite(s): -Further courses are built on it: No Number of teaching hours/week (lecture + practice): 2+2

Topics:

Descriptive geometry is a branch of geometry in which the three-dimensional figures (spatial objects) are represented on a plane using one of the projecting methods and we must solve some geometrical problems of them in the image plane. The consisting positions, intersecting positions, metrical problems will be investigated.

Introduction to the Monge's method of projecting, projection of the space-elements. Points and lines in the plane. Intersection of a line with the plane. Intersection of two planes. Method of the replacing image-planes (transformation of views). Metric tasks. New views of a polyhedron (using transformation). Intersection of the polyhedrons with lines and planes. Intersection of two polyhedrons. Curved surfaces

Literature:

Compulsory:

- Church, A. E.: Elements of Descriptive Geometry, American Book Company, University of Michigan
- Ledneczky, P.: Descriptive Geometry I., BUTE
- Pare, E. G.,- Loving, R. O. Hill, I. L. Pare, R. C.: Descriptive Geometry, Amazon

Schedule

1 st week Registration week	
2 nd week:	3 rd week:
Practice: Axonometry, perspective; Introduction to multiview projection	Practice: Introduction to the Monge's method of projecting
	Projection of the space-elements (points, lines, segments, planes), Relative position of two straight lines, Special positions of a straight line to image planes, Special positions of the planes to the image planes
4 th week:	5 th week:
Practice: Points and lines in the plane	Practice: Intersection of a line with the plane
Line in a plane, point in a plane	Intersection of a line with the projecting
First mainline and second mainline in a	plane
plane	Intersection of a line with the plane (in
Point in a first/second projecting plane	general position). Visibility

6 th week: Practice: Intersection of two planes The intersection line of projecting planes The intersection line of planes, if one of them is in projecting position Intersection line of two planes	7 th week: Practice: Method of the replacing image- planes (transformation of views) Introduction of new image planes, the method of the replacing of an image plane with a new plane
8 th week: 1 st drawing week	
 9th week: Practice: Metric tasks I. Determining distances and angles of the objects Distance between two points. Lenght of the line-segment. Distance from a point to a plane. Distance from a point to a line. Angle of inclination of a line to the image-planes. Angle formed by two planes. Perpendicularity 	 10th week: Practice: Metric tasks II. Determining distances and angles of the objects Distance between two parallel lines. Distance between two skew lines. Distance between two parallel planes. Angle formed by two lines.
11 th week:	12 th week:
Practice: Intersection of the polyhedrons with lines and planes Prisms and pyramids	Practice: Intersection of two polyhedrons I. Intersection of prisms and pyramids
13 th week:	14 th week:
Practice: Intersection of two polyhedrons II. Intersection of prisms and pyramids	Practice: Curved surfaces (Cylinders, Cones, Spheres) Intersection of the Curved surfaces with planes. Development of a curved surfaces and intersections, Kochanski's Approximation.

15th week: 2nd drawing week

Requirements

A, for a signature: Regular attendance (Minimum 70 %). Successful accomplishment of three drawings.

B, for grade: Grades will be a composite of homework (30%), mid-term test (35%), end-term test (35%). The homework will be issued five times in the semester. Minimum requirements to pass the semester: successful accomplishment of the drawings and tests (minimum 50%).

Mechanical Machines and Machine Elements

Subject group: Professional Compulsory Subjects – Faculty of Engineering Model curriculum number: 19 Code: MK3MGEPG04RX17-EN ECTS Credit Points: 4 Evaluation: exam Year, Semester: 2nd year, 1st semester Its prerequisite(s): Aircraft Technology Further courses are built on it: No Number of teaching hours/week (lecture + practice): 2+2

Topics:

The series of lectures are based on the topics of mechanics. It reviews the standardised presentation of machine elements and tolerance and fit systems; the set-up of a machine group, the connection of its elements and their operation. In the course students acquire the features of prime mowers, machines; the different types of clutches and couplings; the bearing support of shafts and the most widely applied rolling bearings; different types of frictional and positive connection drives; types of brakes and application fields. In practice, the different machines and machine elements are introduced and the selection of them from brand catalogues: rolling bearings, couplings, belt and pulley, chain and sprocket.

Literature:

Compulsory:

- Ansel Ugural, NEW JERSEY INSTITUTE TECH: Mechanical Design: An Integrated Approach, 1st Edition Hardcover with access card, ©2004, ISBN-13 9780072921854
- Tiba Zsolt: Machine Drawing, Debrecen University Press 2010. ISBN 978-963-318-066-2,
- Tiba Zsolt: Drivetrain Optimization, Lambert Academic Publishing, 2016. (ISBN: 9783659859274)
- Tiba Zsolt: Basic constructions of machine design, Lambert Academic Publishing, 2017. (ISBN: 978-3-330-34649-9)

Recommended:

• Optibelt: Technical Manual V-belt drives

http://www.optibelt.com/fileadmin/content/pdf/Produkte/EN/Optibelt-TH-v-belt-drives.pdf

• Rexnord: Roller Chains

http://www.rexnord.com/ContentItems/TechLibrary/Documents/7010_Rexnord-and-Link-Belt-Rollerchains_Catalog-p.aspx

• SKF General Catalogue

http://www.skf.com/group/knowledgecentre/subscriptions/displayfactbox.html?ite mid=tcm:12-121486

Schedule

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Tolerance and fit systems Practice: Calculation of tolerance types and fits	Lecture: Set-up of a machine group, operation and operation requirements Practice: Characteristicsand operation features of prime mowers,machines and precondition of stabile running
4 th week:	5 th week:
Lecture: Linkage mechanisms, types of constraints. Statically determinate, indeterminate and unstable constructions	Lecture: Construction details of shafts and its parts, functions. Keyed and splined joints of shafts transmitting the peripheral force.
Practice: Analyzing linkage mechanisms: suspension systems of vehicles and airplanes.	Practice: Construction of keyed and splined joints, sizing.
6 th week:	7 th week:
Lecture: Shaft bearing systems. Most widely applied rolling bearings and their features. Practice: Introduction of different types of rolling bearings and choosing them from brand catalogue.	Lecture: Bearing arrangements. Locating, non-locating bearing arrangement. Cross-located bearing arrangements with adjusted or floating bearings. Selection of ball and roller bearings for service life.
	Practice:
oth Last Line L	Explanation of shaft bearing constructions.
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Seals, operation principles. Contacting and non -contacting seals and their application fields.	Lecture: Clutches and couplings. Types, operation features, application fields. Practice: Stiff, flexible and universal joints. Introduction in lab and choosing from catalogues.

Practice: Showing the different types of seals, choosing them from brand catalogues.	
11 th week:	12 th week:
Lecture: Heat balance of braking. Types of brakes, actuation of them, operation	Lecture: Types of belt drives, operation features, application fields.
method.	Practice: Pulley constructions, belt sections,
Practice: Showing brakes. Analyzing the operation of them.	design of belt drive, applying design charts.
13 th week:	14 th week:
Lecture: Types of chain drives, operation	Lecture:
Lecture: Types of chain drives, operation features, application fields.	Lecture: Types of gear drives. Operation and their
features, application fields. Practice: Sprocket and chain constructions.	
features, application fields. Practice: Sprocket and chain constructions. Design of chain drive, applying design	Types of gear drives. Operation and their
features, application fields. Practice: Sprocket and chain constructions.	Types of gear drives. Operation and their application fields.

A, for a signature:

Attendance at **lectures** is recommended, but not compulsory.

Participation at **practice classes** is compulsory. Students must attend the practice classes and may not miss more than three classes during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students cannot make up any practices with other groups. Attendance at practice classes will be recorded by the practice leader. Being late counts as an absence. In case of more than three absences, a medical certificate needs to be presented. Missed practice classes should be made up for at a later date previously discussed with the tutor.Students are required to bring the drawing tasks and drawing instruments of the course to each practice class. Active participation is evaluated by the teacher in every class. If a student's behavior or conduct does not meet the requirements of active participation, the teacher may evaluate his/her participation as an absence because of the lack of active participation in class.

Students have to **submit all the designing tasks** as scheduled minimum at a sufficient level.

During the semester, there are two tests: the mid-term test in the 8^{th} week and the end-term test in the 15^{th} week. Students have to sit for the tests.

B, for a grade:

The course ends in an **examination**. Based on the average of the grades of the designing tasks and the examination, the exam grade is calculated as an average of them:

- the average grade of the two designing tasks
- the result of the examination

The minimum requirement for the mid-term and end-term tests and the examination respectively is 60%. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following table:

Score / Grade

0 - 59 % = fail (1); 60 - 69 % = pass (2); 70 - 79 % = satisfactory (3); 80 - 89 % = good (4); 90 - 100 % = excellent (5)

If the score of any test is below 60, students can take a retake test in conformity with the EDUCATION AND EXAMINATION RULES AND REGULATIONS.

An offered grade: it may be offered for students if the average grade of the designing tasks is at least good (3) and the average of the mid-term and end-term tests is at least good (3). The offered grade is the average of them.

Mechatronic Devices (Sensors, Actuators, Motors)

Subject group: Professional Compulsory Subjects – Faculty of Engineering Model curriculum number: 20 Code: MK3ERZBR04RX17-EN ECTS Credit Points: 4 Evaluation: mid-semester grade Year, Semester: 2nd year, 1st semester Its prerequisite(s): Engineering Physics Further courses are built on it: Yes Number of teaching hours/week (lecture + practice): 2+2

Topics:

Types of sensors, categories of measurable quantities, static characteristics of the sensors. Typical applications of sensor systems. Sensors for high temperature measurement (infrared radiometers, pyrometers). Different level sensors (capacitance, thermal, floating, microwave, rotary paddle, etc.). Different flow sensors (induction, calorimetry, ultrasonic, thermal conductance, electromagnetic, rotameters, etc.). Measurement of kinematic quantities based on different principles: distance, speed, acceleration, vibration. The role of actuators. Types of actuators. Pneumatic actuators, valves, latches and actuators. Piezoelectric actuators. Contactors and electrical contactors. Midget motors.

Literature:

Compulsory:

• Robert H Bishop, The Mechatronics Handbook, CRC Press, 2007, ISBN 9780849392573 - CAT# 9257

Recommended:

• Sabrie Soloman, Sensors Handbook, Mac-Grow Hill Company, 2010, ISBN : 978-0-07-160571-7, Available on-line at: http://ailab.ijs.si/~blazf/kro/SL/Soloman%20-%20Sensors%20Handbook%202nd%20Edition%20-%202010.pdf

Schedule

1 st week Registration week		
2 nd week:	3 rd week:	
Lecture : Definition, types of sensors, main error sources of transducers.	Lecture: Static and dynamic sensor characteristics, environmental impacts on	
Practice: Application of ultrasonic distance sensor.	characteristics. Practice: Application of pressure sensor.	
4 th week:	5 th week:	
Lecture: Position sensors.	Lecture: Level sensors.	
Practice: Application of color sensors.	Practice: Application of level sensors.	
6 th week:	7 th week:	
Lecture: Flowmeters.	Lecture: High temperature measurement.	
Practice: Application of temperature and humidity sensors.	Practice: Application of gas sensor.	
8 th week: 1 st drawing week		
9 th week:	10 th week:	
Lecture: Chemical sensors: humidity, gas sensor, etc.	Lecture: Measurement of kinematic quantities.	
Practice: Application of light sensors.	Practice: Application of acceleration sensor.	
11 th week:	12 th week:	
Lecture: Force and torque measurement. Practice: Application of vibration sensor.	Lecture: Role of actuators, types of actuators.	
	Practice: QNET Mechatronics sensor trainer.	
13 th week:	14 th week:	
Lecture: Electromechanical Actuators: DC Motors, AC Motors, Linear Motors, Stepper Motors, Midget Motors. Practice: QNET HVAC trainer.	Lecture: Piezoelectric actuators, magnetostriction actuators, magneto hydrodynamic activators, memory metal actuators.	
	Practice: QNET motors trainer.	
1 Eth woold 200 drowing woold		

15th week: 2nd drawing week

A, for a signature:

Attendance at lectures is recommended, but not compulsory. Participation at practice classes is compulsory. Students must attend the practice classes and may not miss more than three classes during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student cannot make up a practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late counts as an absence. Missed practice classes must be made up for at a later date, being discussed with the tutor. Active participation is evaluated by the teacher in every class. The student has to prepare measurement report on every practise and has to submit the reports until deadline.

B, for a grade:

For the mid-semester grade the student has to write two tests. The mid-semester grade is received in scoring system (total 100) by the following:

- 1st test with 40 points
- 2nd test with 40 points
- quality of the measurement reports with 20 points

The mid-semester grade is given according to the following table:

Score	0-59 %	60-69%	70-79 %	80-89 %	90-100 %
Grade	fail (1)	pass (2)	satisfactory (3)	good (4)	excellent (5)

Theoretical Knowledge of Airline Transport Pilot Licence III (ATPL)

Subject group: Professional Compulsory Subjects – ATP(A) Model curriculum number: 31 Code: MK3TKA3R02HX17-EN ECTS Credit Points: 1 Evaluation: authority exam Year, Semester: 2nd year, 1st semester Its prerequisite(s): Theoretical Knowledge of Airline Transport Pilot Licence II (ATPL) Further courses are built on it: No Number of teaching hours/week (lecture + practice): 1+1

Topics:

The course (Part I, II and III together) teaches the basic knowledge of Principle of Flight to demonstrate a level that grants a successful authority exam according to FCL.515 ATPL — Training course and theoretical knowledge examinations.

Part II of the course covers the following main areas and give thorough information on:

Controls, high speed aerodynamics, limitations, maneuvering envelope, gust envelope, flight mechanics, forces acting on an airplane, asymmetric thrust

By conducting all Part of the course the student will have the knowledge recommended by the EU legislation (AMC1 FCL.310; FCL.515 (b); FCL.615 (b) and will understand the complex high speed aerodynamics of aeroplanes.

Learning Objectives (LOs) published by the European Commission are used when developing the Part-FCL theoretical knowledge elements of the course.

The course is aimed to contribute to the achievement of safe flight during their proposed pilot career. It is crucial that a pilot could be able to recognize the hazard and apply for the well-known procedures in this matter during a flight.

Literature:

Compulsory:

• CAE OXFORD AVIATION ACADEMY (UK), Principles of Flight, 2015, ISBN: 978 1 90620 276 7

Schedule

1st week Registration week

2 nd week:	3 rd week:
Lecture and practice: Controls – moments, balancing.	Lecture and practice: Controls – longitudinal and lateral control
4 th week:	5 th week:
Lecture and practice: Controls – speed brakes, directional control	Lecture and practice: Controls – secondary effects of controls, trimming
6 th week:	7 th week:
Lecture and practice: High speed aerodynamics - speeds	Lecture and practice: High speed aerodynamics - shockwaves
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Lecture and practice: High speed aerodynamics – critical Mach number	Lecture and practice: High speed aerodynamics – Buffet and buffet margin
11 th week:	12 th week:
Lecture and practice: Limitations – Manoeuvering envelope	Lecture and practice: Limitations – Gust envelope
13 th week:	14 th week:

Lecture and practice: Flight mechanics – forces acting on an aeroplane

Lecture and practice: Flight mechanics – asymmetric thrust

15th week: 2nd drawing week

Requirements

A, for a signature:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

B, for grade:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

Meteorology II (ATPL)

Subject group: Professional Compulsory Subjects – ATP(A) Model curriculum number: 32 Code: MK3MET2R02HX17-EN ECTS Credit Points: 3 Evaluation: authority exam Year, Semester: 2nd year, 1st semester Its prerequisite(s): Meteorology I Further courses are built on it: No Number of teaching hours/week (lecture + practice): 2+3

Topics:

The course (Part I and II together) teaches the basic knowledge of Meteorology to demonstrate a level that grants a succesfull authority exam according to FCL.515 ATPL - Training course and theoretical knowledge examinations.

Part II of the course covers the following main areas and give thorough information on:

Visibility, icing, air masses and fronts, documentation, weather and wind charts, area route climatology, flight hazards, meteorological information, metars, tafs, warning messages

By conducting both Part of the course the student will have the knowledge recommended by the EU legislation (AMC1 FCL.310; FCL.515 (b); FCL.615 (b) and will understand the complex knowledge of meteorological conditions, different atmospheric structure and activities.

Learning Objectives (LOs) published by the European Comission are used when developing the Part-FCL theoretical knowledge elements of the course.

The course is aimed to contribute to the achievement of safe flight during their proposed pilot career. It is crucial that a pilot could be able to recognize the hazard and apply for the well-known procedures in this matter during a flight.

Literature:

Compulsory:

• CAE OXFORD AVIATION ACADEMY (UK), Meteorology, 2015, ISBN: 978 1 90620 272 9

Schedule

1st week Registration week

2nd week:

Lecture: Climatology, Climatic zones, General circulation in the troposphere and lower stratosphere, Climatic classification

Practice: Climatic classification examples

4th week:

Lecture: Climatology, Typical weather situations in the mid-latitudes, Westerly situation (westerlies), High-pressure area, Flat-pressure pattern, Cold-air pool (cold-air drop), Local winds and associated weather

Practice: Foehn, Mistral, Bora, Scirocco, Ghibli and Khamsin, Harmattan

6th week:

Lecture: Flight hazards, Wind shear, Definition of wind shear, Weather

3rd week:

Lecture: Climatology, Tropical climatology, Cause and development of tropical showers and thunderstorms:humidity, temperature, tropopause, Seasonal variations of weather and wind, typical synoptic situations

Practice: Intertropical Convergence Zone (ITCZ), general seasonal movement, Monsoon, sandstorms, cold-air outbreaks, Easterly waves

5th week:

Lecture: Flight hazards, Icing, Conditions for ice accretion, Types of ice accretion, Hazards of ice accretion, avoidance, Turbulence, Effects on flight, avoidance, Clear-Air Turbulence (CAT): effects on flight, avoidance

Practice: Case study, avoidance techniques

7th week:

Lecture: Flight hazards, Thunderstorms, Conditions for and process of development, forecast, location, type specification,

conditions for wind shear, Effects on flight, avoidance Practice: Case study, avoidance techniques	Structure of thunderstorms, life history, Electrical discharges, Development and effects of downbursts Practice: Thunderstorm avoidance, Tornadoes, Properties and occurrence
8 th week: 1 st drawing week	
9 th week: Lecture: Flight hazards, Inversions, Influence on aircraft performance, Stratospheric conditions, Influence on aircraft performance Practice: Aircraft performance influence examples	10 th week: Lecture: Flight hazards, Hazards in mountainous areas, Influence of terrain on clouds and precipitation, frontal passage, Vertical movements, mountain waves, wind shear, turbulence, ice accretion, Development and effect of valley inversions, Visibility-reducing phenomena Practice: Reduction of visibility caused by precipitation and obscurations, Reduction of visibility caused by other phenomena
11 th week:	12 th week:
Lecture:MeteorologicalInformation,Observation,Surfaceobservations,Radiosondeobservations,Satelliteobservations,Weather-radar observations,Aircraft observations and reportingPractice:Airport meteorological center site	Lecture: Meteorological Information, Weather charts, Significant weather charts, Surface charts, Upper-air charts Practice: Charts examples
visit	
13 th week:	14 th week:
Lecture: Meteorological Information, Information for flight planning, Aviation weather messages, Meteorological broadcasts for aviation, Use of meteorological documents, Meteorological	Lecture: Meteorological Information, Meteorological services, World area forecast system and meteorological offices, International organisations Practice: Meteorological offices in
warnings Practice: Aviation weather messages examples	operation
15 th week: 2 nd drawing week	

A, for a signature:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

B, for grade:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

General Navigation (ATPL)

Subject group:: Professional Compulsory Subjects – ATP(A) Model curriculum number: 33 Code: MK3GENAR04HX17-EN ECTS Credit Points: 4 Evaluation: authority exam Year, Semester: 2nd year, 1st semester Its prerequisite(s): -Further courses are built on it: No Number of teaching hours/week (lecture + practice): 3+4

Topics:

The course teaches the basic knowledge of General Navigation to demonstrate a level that grants a successful authority exam according to FCL.515 ATPL — Training course and theoretical knowledge examinations.

The course covers the following main areas and give thorough information on:

Basics of navigation, magnetism and compasses, charts, dead reckoning navigation, inflight navigation, direction latitude and longitude, great circles rhumb lines, the vector triangle, topographical maps, pilot navigation, wind components, convergency and conversion angle, departure, scale, charts, general navigation problems, gyroscopes, the direct indicating compass, remote indicating compass, flight management systems, area navigation systems

By conducting the course, the student will have the knowledge recommended by the EU legislation (AMC1 FCL.310; FCL.515 (b); FCL.615 (b) and will understand the legal background and basis of aviation, learn the structure and sources of the rules.

Literature:

Compulsory:

• CAE OXFORD AVIATION ACADEMY (UK), General Navigation, 2015, ISBN: 978 1 90620 273 6

Schedule

1st week Registration week

2nd week:

Lecture: Basics of navigation, The solar system, Earth's orbit, seasons and apparent movement of the sun, The Earth, rhumb line, Convergency, conversion angle, Latitude, difference of latitude, Longitude, difference of longitude

Practice: Great circle, small circle, Use of latitude and longitude coordinates to locate any specific position

4th week:

Lecture: Direction (Datums, Track Heading) (True north, Terrestrial magnetism: magnetic north, inclination and variation, Compass deviation, compass north, Isogonals, relationship between true and magnetic north, Gridlines, isogrives

Practice:Compassinstrumentdemonstration, Calculation examples

6th week:

Lecture: Speed (True Airspeed (TAS), Mach number (M), Ground Speed (GS), Flight Log Gradient versus rate of climb/descent, Triangle of velocities (TOV), Ground-speed

revision, Off-track corrections, Calculation of wind speed and direction, Estimated Time of Arrival (ETA) revisions)

Practice: Units of speed conversion examples

8th week: 1st drawing week

9th week:

Lecture: Navigation in climb and descent (Average airspeed, Average wind velocity (WV), Ground speed/distance covered during climb or descent, Gradients versus rate of climb/descent

Practice: Case studies for in-flight navigation

3rd week:

Position (Knowledge of the principles of the direct-reading (standby) compass, The use of this compass, Serviceability tests, Situations requiring a compass swing) **Practice:** Compass instrument demonstration

5th week:

Lecture: Distance (Units of distance and height used in navigation: nautical miles, statute miles, kilometres, metres, feet, Conversion from one unit to another, Relationship between nautical miles and minutes of latitude and minutes of longitude)

Practice: Units of distance conversion examples

7th week:

Lecture: Dead Reckoning (DR) navigation (Determination of DR position, Confirmation of flight progress (DR), Lost procedures, Measurement of DR elements, Calculation of altitude, adjustments, corrections, errors, Determination of temperature, Determination of appropriate speed, Determination of Mach number) Practice: Calculation examples

10th week:

Lecture: Visual flight rule (VFR) navigation (Ground Features, VFR navigation techniques

Practice: Introduction to flight planning

11th week:

Lecture: Great Circles and Rhumb Lines (Properties and Convergence, relationship (distances and conversion angle)

Practice: Calculation examples

3th week:

Lecture: The use of current aeronautical charts (Plotting positions, Methods of indicating scale and relief, Conventional signs, Measuring tracks and distances, Plotting bearings)

Practice: Example on charts, measuring

15th week: 2nd drawing week

Requirements

A, for a signature:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

B, for grade:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

12th week:

Lecture: General properties of miscellaneous types of projections (Direct Mercator, Lambert conformal conic, Polar stereographic

Practice: Practical use

14th week:

Lecture: Time and time conversions (Apparent tim, Universal Time Coordinated (UTC), Local Mean Time (LMT), Standard times (STs), Dateline, Determination of sunrise (SR), sunset (SS) and civil twilight) Practice: Time conversion examples

4th semester

Economics for Engineers

Subject group: Economics and Humanities – Faculty of Engineering

Model curriculum number: 10

Code: MK3KOZMM04XX17-EN

ECTS Credit Points: 2

Evaluation: exam

Year, Semester: 2nd year, 2nd semester

Its prerequisite(s): -

Further courses are built on it: Yes

Number of teaching hours/week (lecture + practice): 2+0

Topics:

Measuring Economic Output and National Income. The Keynesian Theory of consumption. The Government and Fiscal policy. Open Economy. Money market. The aggregate demand and aggregate supply. The labour market. Unemployment. Inflation.

Literature:

Compulsory:

- Mankiw, Gregory: Principles of Economics. Fifth Edition. South-Western, Mason, USA, 2009. ISBN: 9780324589979.
- Mankiw, Gregory (2015): Principles of Economics. Study Guide. Seventh Edition. Cengage Learning, ISBN-13:978-1-285-86421-1.
- Judit T. Kiss (2014): Introduction to Macroeconomics for Engineers and Technical Managers. Debrecen University Press. ISBN: 978-963-318-416-5.

Recommended:

- K. E. Case R. C. Fair S. M. Oster (2012): Principles of Macroeconomics, Tenth Edition. Prentice Hall, ISBN 13: 978-0-13-139140-6.
- Samuelson P.A., Nordhaus W.D.: Economics, 18th edition, Academic Internet Publishers Inc., 2006. ISBN: 0072872055
- Parkin, M., Powell, M. & Matthews, K. (2008) Economics. 7th ed. Harlow: AddisonWesley. ISBN-13: 9780132041225
- Parkin, M (2005) Economics, 7th edn, Addision Wersley: Pearson. ISBN: 0321248449.

Schedule

1st week Registration week

2nd week:

Lecture: The Scope and Method of Economics

Introduction to economics. The method of economics. Microeconomics and Macroeconomics. Models in Economics. Introduction to Macroeconomics. The components of the Macroeconomics. The circular flow Diagram. Market sectors.

Calculation/team problems: The circular flow Diagram. Case study examination.

4th week:

Lecture: Market demand and supply, equilibrium. The Keynesian Theory of consumption, consumption function, marginal propensity to consume, planned investment, saving function, marginal propensity to saving, aggregate output, determination of equilibrium output, the multiplier, IS curve.

Calculation/team problems: Market demand and supply, equilibrium. Two sector model.

6th week:

Lecture: Demand and supply in an open economy. Equilibrium output in an Open Economy, net exports. Imports and exports and Trade Feedback effect. Measurement of openness. Exchange rates.

Calculation/team problems: Demand and supply in an open economy. Equilibrium output in an Open Economy, net exports.

8th week: 1st drawing week

3rd week:

Lecture: Measuring national output and national income (Gross Output, Gross Domestic Product, calculating GDP, real versus nominal GDP, the components of the GDP, the expenditure approach, the income approach, GDP deflator, Gross National Income, and Gross National Disposable income). Measuring the cost of living (GDP and Social Welfare, the Consumer Price Index, GDP deflator versus CPI, real and nominal interest rate).

Calculation/team problems: The expenditure approach. The difference between real GDP and nominal GDP. Macroeconomic indicators.

5th week:

Lecture: The government and fiscal policy. Government purchases, taxes, disposable income, government budget deficit and surpluses, determination of equilibrium output, fiscal policy, the government spending multiplier, the tax multiplier. Average tax rate, tax wedge, and marginal tax rate.

Calculation/team problems: Fiscal policy and the equilibrium. Average tax rate, tax wedge, and marginal tax rate.

7th week:

Lecture: The meaning of money, the functions of money, measuring the supply of money. The creation of money, required reserve ratio. The money multiplier. Open market operations. Fisher effect (nominal and real interest rate). Banking system, Commercial banking.

Calculation/team problems: The money multiplier. Fisher effect (nominal and real interest rate).

Mid-Term Test I

9th week:

Lecture: The demand for money. Supply and demand in the money market. The equilibrium interest rate. The LM curve. The equilibrium price-level.

11th week:

Lecture: The demand for labour, the supply of labour. The labour force, working-age population, active and inactive population, labour participation rate. Supply curve and demand curve, equilibrium.

Calculation/team problems: Examination of the fiscal and monetary policy.

13th week:

Lecture: Inflation; (Price level, inflation rate, definition and measuring of inflation, types and causes of inflation, demand-pull inflation and cost-push inflation, The Philips curve: unemployment rate and inflation rate).

Calculation/team problems: Supply curve and demand curve, equilibrium. Disequilibrium in the labour market.

15th week: 2nd drawing week

Requirements

A, for a signature:

Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three occasions during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students cannot take part in any practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late counts as an absence. In case of further absences, a medical certification needs to be presented. Missed practice classes must be made up for at a later date, being discussed with the tutor.

10th week:

Lecture: Aggregate demand curve and aggregate supply curve. The effects of a shift in aggregate demand, the Equilibrium. The IS-LM model. Fiscal and monetary policy.

Calculation/team problems: The demand for money. Supply and demand in the money market. The equilibrium interest rate.

12th week:

Lecture: Unemployment, the unemployment rate, the activity rate. Types of unemployment (voluntarily and involuntarily unemployment; structural, frictional and cyclical unemployment), Okun law. Social and economic effect.

Calculation/team problems: The labour force, working-age population, active and inactive population, labour participation rate.

14th week:

Lecture: Growth (sources of economic growth, human capital, education and skills), Economic growth around the World. Sustainable development.

Calculation/team problems: demand-pull inflation and cost-push inflation.

During the semester there are two tests: the mid-term test on the 7^{th} week and the end-term test on the 15^{th} week. Students must sit for the tests.

B, for a grade:

The minimum requirement of the mid-term, the end-term test and the teamwork is 50% separately. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following table:

0-49 %= fail (1); 50-62 % = pass (2); 63-75 % = satisfactory (3); 76-89 % = good (4); 90-100 % = excellent (5)

If the score of any test is below 50%, the student once can take a retake test of the whole semester material.

Materials Engineering

Subject group: Professional Compulsory Subjects – Faculty of Engineering Model curriculum number: 21 Code: MK3ANISG06RX17-EN ECTS Credit Points: 5 Evaluation: mid-semester grade Year, Semester: 2nd year, 2nd semester Its prerequisite(s): Aircraft Technology Further courses are built on it: No Number of teaching hours/week (lecture + practice): 3+2

Topics:

The aim of the course is to give a basic and useful material science knowledge to our students, through the presentation of special materials and its tangible analysis. Additionally, students can get closer to medical materials, which are currently being developed at a remarkable scale.

Literature:

Compulsory:

- Chawla, Krishan K. Composite Materials Science and Engineering 3rd ed. Springer 2012
- Nicolais, Luigi; Meo, Michele; Milella, Eva: Composite Materials: A Vision for the Future, 2011 Springer Verlag
- C.P. Poole, F.J. Owens: Introduction to nanotechnology, Wiley Interscience, 2003

Schedule

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Overview of the groups of engineering materials and presentation of the latest material science results Practice: Preparation of a metallographic sample for semester task	Lecture: Metals I - overview and presentation of metallic alloys Practice: Preparation of a metallographic sample for semester task
4 th week:	5 th week:
Lecture: Metals II - manufacturing technology of metals	Lecture: Metals III – Material testing and qualification
Practice: Preparation of a metallographic sample for semester task	Practice: Preparation of a metallographic sample for semester task
6 th week:	7 th week:
Lecture: Metals IV – Theoretical background f metal alloys	Lecture: Polymer I - Overview of Industrial Polymers, Production Technology
Practice: Microscopic analysis to complete the semester task	Practice: Microscopic analysis to complete the semester task
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Polymer II - Certification procedures for industrial polymers, case studies Practice: Microscopic analysis to complete the semester task	Lecture: Ceramics I - Overview Practice: Microscopic analysis to complete the semester task
11 th week:	12 th week:
Lecture: Ceramics II - Production technology	Lecture: Ceramics III - Qualification procedures
Practice: Measurement of toughness toughness and theoretical strength calculation of the ceramic coating of the neural implant.	Practice: Measurement of toughness toughness and theoretical strength calculation of the ceramic coating of the neural implant.
13 th week:	14 th week:
Lecture: Composite materials. Practice: Presentation of semester task	Lecture: Special and Biocompatible materials.
	Practice: Microscopic analysis of human implants

15th week: 2nd drawing week

A, for a signature:

Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three practice classes during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students cannot take part in any practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late counts as an absence. In case of further absences, a medical certification needs to be presented. Missed practice classes must be made up for at a later date, being discussed with the tutor.

During the semester there are two tests: the mid-term test is on the 8^{th} week and the end-term test is on the 15^{th} week. Students must sit for the tests.

B, for a grade:

The course ends in a mid-semester grade based on the average grade of the two tests.

The minimum requirement of the mid-term and the end-term test is 60% separately. The grade for each test is given according to the following table:

Score / Grade

0 - 59 = fail (1); 60 - 69 =pass (2); 70 - 79 =satisfactory (3); 80 - 89 = good (4); 90 - 100 =excellent (5)

If the score of any test is below 60, the student once can take a retake test of the whole semester material.

Technique of Measurement

Subject group: Professional Compulsory Subjects – Faculty of Engineering Model curriculum number: 22 Code: MK3TEMER04HX17-EN ECTS Credit Points: 4 Evaluation: mid-semester grade, measurement report Year, Semester: 2nd year, 2nd semester Its prerequisite(s): Electrotechnics Further courses are built on it: No Number of teaching hours/week (lecture + practice): 2+2

Topics:

Detectors (sensors) and transducers. Grouping the sensors. The measuring device structure and characteristics. Unit of measurement systems. Measurement error. Measurement methods. Electro-mechanical - and electronic instruments. Digital instruments. Microelectronic sensors. Elastic deformation measuring devices. Temperature, light and radiation detectors. Thermocouples, thermometers metal,

semiconductor thermometers-; Optical gates-; Capacitive proximity switches-; Ultrasonic sensors-; structure, operating principles and properties. Foil Version strain gauges, semiconductor strain gauges, strain sensor wire, one, two and four-sensor bridge circuit. Fiber optic sensors. Signal processing systems. Pressure, temperature, strain and measurement of rotary motion using National Instruments LabVIEW software.

Literature:

Compulsory:

- Aciatore, David G.: Introduction to mechatronics and measurement systems, Boston, 2007, ISBN:007 125407 2
- Ed. Robert H. Bishop: The Mechatronics Handbook, Section III: Sensors and actuators

Recommended:

- David G. Alciatore, Michael B. Histand: Introduction to mechatronics and measurement systems 1st. McGraw-Hill, 2013. ISBN: 978-0073380230
- U. A. Bakshi V.U. Bakshi: Electronic Measurement and Instrumentation 1st. Technical Publications Pune, 2009. ISBN: 9788184315295

Schedule

1st week Registration week

2nd week:

Lecture: Basic concepts of measurement. Sensors (sensors) and transducers. The sensors are grouped. The structure and characteristics of the measuring apparatus. Measurement Systems. Measurement errors. Measurement methods. **Practical:** General description about laboratory regulations. Accident prevention and safety education.

4th week:

Lecture: Types of photo resist and application. The structure and features of a phototransistor. The structure and use of a light pencil. The structure, characterization and application of a liquid crystal display.

Practical: Measurement of LED characteristics.

3rd week:

Lecture: Theoretical basis of Light electric effect sensors. The photodiode and photovoltaic structure, modes of operation and application. Multi-color LEDs. The structure and characteristics of optical interfaces. The scanner structure and characteristics of CCD sensors.

Practical: Examination of solar cell.

5th week:

Lecture: Measuring elastic deformation instruments. Piezoelectric and piezoresistive sensors. Elastic deformation measuring instruments. Bellows. Microelectronic capacitive pressure sensors. PN-gradient sensors and the MOSFET structure.

Practical: Measurement of elastic deformation

 6th week: Lecture: Thermoelectric sensors. The operating principles, construction and characteristics of an infrared motion sensor. Thermoelectric transducer coupling, the PVDF film. Thermocouples, semiconductor structure, function and features of metal thermometers and other thermometers. Practical: Measurement of temperature. 	7 th week: Lecture: An optical gate. Its structure, working principle and characteristics, and application areas. Practical: Measurement of an optical gate.
8 th week: 1 st drawing week	Mid-term test
9 th week:	10 th week:
Lecture: A capacitive proximity switch. Its structure, working principle, characteristics and application areas. Practical: Measuring of capacitive proximity switch.	Lecture:Ultrasonicsensors.Theirstructures,workingprinciples,characteristics, and application areas.Practical:Measuringofanultrasonicdistance sensor.
11 th week:	12 th week:
Lecture: Strain gages. Foil strain gauges, semiconductor strain gauge, strain sensor wires, one, two and four-sensing bridge circuits.	Lecture: The Reed switch and magneto inductive sensors. Their structures, working principles, characteristics and Application areas.
Practical: Measuring of strain gages.	Practical: Measuring of reed switch.
13 th week:	14 th week:
Lecture: Description of the main features of the NI LabVIEW software. Practical: National Instrumnets with hardware and software. Edit VI. Measuring system construction, Troubleshooting practice	Lecture: Structure of the NI data acquisition systems. DAQ connecting to your computer. Practical: Recording and evaluation of data measured by National Instruments Hardware

15th week: 2nd drawing week: End-term test

Requirements

A, for a signature:

Attendance at lectures is recommended, but not compulsory. Participation at practice classes is compulsory. Students must attend the practice classes and may not miss more than three classes during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. A student cannot make up a practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with absence. Missed practices should be made up for at a later

date, being discussed with the tutor. Active participation is evaluated by the teacher in every class. If a student's behavior or conduct does not meet the requirements of active participation, the teacher may evaluate his or her participation as an absence because of the lack of active participation in the class. Students have to submit all the twelve reports as scheduled minimum at a sufficient level. During the semester, there are two tests: the mid-term test is in the 8th week and the end-term test in the 15th week.

B, for grade:

Based on the average of the grades of the reports and the test results, the mid-semester grade is calculated as an average of them: - the average grade of the twelve reports (50 %) - the grade of the tests (50 %). The minimum requirement for end-term test is 60%. Based on the score of the test separately, the grade for the test is given according to the following table:

0-59 % = fail (1); 60-69 % = pass (2); 70-79 % = satisfactory (3); 80-89 % = good (4); 90-100 % = excellent (5)

Aircraft General Knowledge I - Airframe, Systems, Power Plants (ATPL)

Subject group: Professional Compulsory Subjects – ATP(A)

Model curriculum number: 34

Code: MK3AGK1R04HX17-EN

ECTS Credit Points: 1

Evaluation: mid-semester grade

Year, Semester: 2nd year, 2nd semester

Its prerequisite(s): -

Further courses are built on it: Yes

Number of teaching hours/week (lecture + practice): 2+0

Topics:

The course (Part I and II together) teaches the comprehensive knowledge of Aircraft General Knowledge — Airframe/Systems/Powerplant to demonstrate a level that grants a succesfull authority exam according to FCL.515 ATPL — Training course and theoretical knowledge examinations.

Part I of the course covers the following main areas and give thorough information on:

System design, loads, stresses and maintenance, airframe, hydraulics, landing gear, wheels, tyres and brakes, flight controls, pneumatics: pressurisation and air conditioning

By conducting both Part of the course the student will have the knowledge recommended by the EU legislation (AMC1 FCL.310; FCL.515 (b); FCL.615 (b) and will understand the

complex technological background, structures, solutions used in airframes, systems and powerplants in aviation.

Learning Objectives (LOs) published by the European Comission are used when developing the Part-FCL theoretical knowledge elements of the course.

The course aims to contribute to the achievement of safe flight during their proposed pilot career. It is crucial for a pilot to be able to recognize hazards during a flight and to apply the right procedures in such cases.

Literature:

Compulsory:

- CAE OXFORD AVIATION ACADEMY (UK), Airframes and Systems, 2015, ISBN: 978 1 90620 265 1
- CAE OXFORD AVIATION ACADEMY (UK), Electrics and electronics, 2015, ISBN: 978 1 90620 266 8
- CAE OXFORD AVIATION ACADEMY (UK), Powerplant, 2015, ISBN:978 1 90620 267
 5

Schedule

1 st week Registration week	
2 nd week:	3 rd week:
Lecture and practice: Fuselage, wings and stabilizing surfaces	Lecture and practice: Landing gear
4 th week:	5 th week:
Lecture and practice: Aircraft wheels, tyres, brakes	Lecture and practice: Basic hydraulics
6th week: Piston engines – General, lubrication, cooling	7th week: Piston engines – Ignition, fuel, Mixture, carburettors
Lecture and practice: Piston engines – Icing, fuel injection, performance, propellers	Lecture and practice: DC electrics – Basics, switches, circuit protection, capacitros
8 th week: 1 st drawing week	
9th week: DC electrics – Batteries, magnetism, generators, alternators	10th week: DC motors, aircraft electrical power systems, screening
11 th week: Pneumatic system	12 th week: Pressurization
13 th week: Oxygen system	14th week: Smoke detection, fire detection and protection
15 th week: 2 nd drawing week	

15th week: 2nd drawing week

Requirements

A, for a signature:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

B, for grade:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

Aircraft General Knowledge – Instrumentation (ATPL)

Subject group: Professional Compulsory Subjects – ATP(A) Model curriculum number: 35 Code: MK3AGKIR04HX17-EN ECTS Credit Points: 2 Evaluation: authority exam Year, Semester: 2nd year, 2nd semester Its prerequisite(s): -Further courses are built on it: No Number of teaching hours/week (lecture + practice): 4+3

Topics:

The course teaches the basic knowledge of Aircraft General Knowledge — Instrumentation to demonstrate a level that grants a successful authority exam according to FCL.515 ATPL — Training course and theoretical knowledge examinations.

The course covers the following main areas and give thorough information on:

Sensors and instruments, measurement of air data parameters , magnetism: direct reading compass and flux valve, gyroscopic instruments, inertial navigation and reference systems, aeroplane: automatic flight control systems, trims, yaw damper and flight envelope protection, autothrottle: automatic thrust control system, communication systems, fms, alerting systems and proximity systems, integrated instruments: electronic displays, maintenance, monitoring and recording systems, digital circuits and computers

By conducting the course the student will have the knowledge recommended by the EU legislation (AMC1 FCL.310; FCL.515 (b); FCL.615 (b) and will understand the complex knowledge of instrumentation used in general and professional aviation by simple, complex and jet airplanes.

Learning Objectives (LOs) published by the European Comission are used when developing the Part-FCL theoretical knowledge elements of the course.

The course is aimed to contribute to the achievement of safe flight during their proposed pilot career. It is crucial that a pilot could be able to recognize the hazard and apply for the well-known procedures in this matter during a flight.

Literature:

Compulsory:

• CAE OXFORD AVIATION ACADEMY (UK), Instrumentation, 2015, ISBN: 978 1 90620 268 2

Schedule

1st week Registration week

1° week Registration week	
2 nd week:	3 rd week:
Lecture: Sensors and instruments, Pressure gauge, Temperature sensing, Fuel gauge, Fuel flowmeters, Tachometer, Thrust measurement, Engine torquemeter, Synchroscope,Engine-vibration monitoring, Time measurement Practice: Lab demonstration	Lecture: Measurement of air-data parameters, Pressure measurement, Definitions, Pitot/static system: design and errors, Temperature measurement, Angle- of-attack measurement, Altimeter, Vertical Speed Indicator (VSI), Airspeed Indicator (ASI), Machmeter, Air-Data Computer (ADC)
	Practice: Site visit, aircraft demonstration
4 th week:	5 th week:
Lecture: Magnetism – direct-reading compass and flux valve, Earth's magnetic field, Aircraft magnetic field, Direct-reading magnetic compass, Flux valve Practice: Magnetism examples	Lecture: Gyroscopic instruments, Gyroscope: basic principles, Rate-of-turn indicator — Turn coordinator — Balance (slip) indicator, Attitude indicator (artificial horizon), Directional gyroscope, Remote- reading compass systems
	Practice: Lab demonstration
6 th week:	7 th week:
Lecture: Inertial navigation and reference systems (INS AND IRS), Inertial Navigation Systems (INS), Inertial Reference Systems (IRS), Basic principles, Design, Errors, accuracy, Operation, (strappeddown) Practice: System presentation	Lecture: Aeroplane: automatic flight control systems, General: Definitions and control loops, Autopilot system: design and operation, Flight Director: design and operation, Aeroplane: Flight Mode Annunciator (FMA), Autoland: design and operation

Practice: Site visit, simulator demonstration

8th week: 1st drawing week

9th week:

Lecture: Trims-Yaw Damper — Flightenvelope protection, Trim systems: design and operation, Yaw damper: design and operation, Flight-Envelope Protection (FEP)

Practice: Operations example

11th week:

Lecture: Communication systems, Voice communication, data link transmission, Definitions and transmission modes, Future Air Navigation Systems (FANS), Flight Management System (FMS), Navigation database, aircraft database, Operations, limitations, Man–machine interface (Multifunction Control Display Unit (MCDU))

Practice: Site visit, simulator demonstration

13th week:

Lecture: Integrated instruments Electronic displays, Electronic display units, instruments: Mechanical integrated Attitude Indicator and Director (ADI)/Horizontal Situation Indicator (HSI), Electronic Flight Instrument Systems (EFIS), Primary Flight Display (PFD), Electronic Attitude Director Indicator (EADI), Navigation Display (ND), Electronic Flight Bag (EFB)

Practice: Site visit, simulator demonstration

15th week: 2nd drawing week

Requirements

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface..

B, for grade:

10th week:

Lecture: Auto-Throttle-Automatic thrust control system, operation of an AT system, take-off/go-around;, climb or Maximum Continuous Thrust (MCT): N1 or EPR targeted; speed;, idle thrust; landing, control loop of an AT system

Practice: Site visit, simulator demonstration

12th week:

Lecture: Alerting systems, Proximity systems, General, Flight Warning Systems (FWS), Stall Warning Systems (SWS), Stall protection, Ground-proximity warning systems (GPWS), Terrain-Avoidance Warning System (TAWS), Enhanced GPWS (EGPWS), ACAS/TCAS

Practice: Case studies

14th week:

Lecture: Maintenance, Monitoring and recording systems, Cockpit Voice Recorder (CVR), Flight Data Recorders (FDR), Maintenance and monitoring systems, Integrated Health & Usage Monitoring System (IHUMS), Aeroplane Condition Monitoring System (ACMS)

Practice: Case studies

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

Radionavigation (ATPL)

Subject group: Professional Compulsory Subjects – ATP(A) Model curriculum number: 36 Code: MK3RANAR04HX17-EN ECTS Credit Points: 2 Evaluation: authority exam Year, Semester: 2nd year, 2nd semester Its prerequisite(s): -Further courses are built on it: No Number of teaching hours/week (lecture + practice): 4+4

Topics:

The course teaches the basic knowledge of Radio Navigation to demonstrate a level that grants a successful authority exam according to FCL.515 ATPL - Training course and theoretical knowledge examinations.

The course covers the following main areas and give thorough information on:

Basic radio propagation theory, radio aids, radar, doppler radar, VDF, NBD and ADF, VOR, ILS, MLS, ground ATC radar, airborne weather radar, secondary surveillance radar, DME area navigation systems and RNAV or FMS, GNSS

By conducting the course the student will have the knowledge recommended by the EU legislation (AMC1 FCL.310; FCL.515 (b); FCL.615 (b) and will understand the legal background and basis of aviation, learn the structure and sources of the rules.

Literature:

Compulsory:

• CAE OXFORD AVIATION ACADEMY (UK), Radio Navigation, 2015, ISBN: 978 1 90620 274 3

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Basic radio propegation theory,	Lecture: Radio aids, Ground D/F, Non-
Basic principles, Electromagnetic waves,	Directional Beacon (NDB)/ Automatic

Frequency, wavelength, amplitude, phase angle, Frequency bands, sidebands, Pulse characteristics, Carrier, modulation, Kinds of modulation (amplitude, frequency, pulse, phase) Practice: Instrument demonstration	Direction Finder (ADF), Principles, Presentation and interpretation, Coverage and range, Errors and accuracy, Factors affecting range and accuracy Practice: NDB/ADF demonstration, Flying an approach
4 th week:	5 th week:
Lecture: Radio aids, VOR and Doppler VOR, DME, Principles,Presentation and interpretation, Coverage and range, Error and accuracy, Factors affecting range and accuracy Practice: VOR/DME demonstration, Flying an approach	Lecture:Radio aids (ILS, Principles, Presentation and interpretation, Coverage and range, Errors and accuracy, Factors affecting range and accuracy; Microwave Landing System (MLS), Principles, Presentation and interpretation, Coverage and range, Error and accuracy) Practice: ILS demonstration, Flying an approach
6 th week:	7 th week:
Lecture: Radar, Pulse techniques and associated terms, Ground radar, Principles Practice: Presentation and interpretation	Lecture: Radar, Airborne weather radar, Principles, Secondary surveillance radar and transponder, Principles, Modes and codes,, Errors and accuracy Practice: Presentation and interpretation
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: GPS, GLONASS, GALILEO (Principles, Operation NAVSTAR GPS, GLONASS, Errors and factors affecting accuracy) Practice: System presentation	Lecture: Ground, satellite and airborne- based augmentation, systems (Ground- Based Augmentation Systems (GBAS), Satellite-Based Augmentation Systems (SBAS), European Geostationary Navigation Overlay Service (EGNOS), Airborne-Based Augmentation Systems (ABAS) Practice: System presentation
11 th week:	12 th week:
Lecture: Performance-based navigation (PBN) concept (as described in ICAO Doc 9613) Navigation computer, VOR/DME navigation, PBN principles, components, scope, Navigation specifications, Area navigation (RNAV) and required navigation performance (RNP), Navigation functional	Lecture: Use of performance-based navigation (PBN), Performance-based navigation (PBN) operations (Specific RNAV and RNP system functions, Performance- based navigation (PBN) principles, On- board performance monitoring and alerting, Abnormal situations, Database management

requirements, Designation of RNP and RNAV specifications Practice: PBN examples	Practice: Site visit, Flight deck demonstration
13 th week:	14 th week:
Lecture: Requirements of specific RNAV and RNP specifications, RNAV 10, RNAV 5, RNAV 1/RNAV 2/RNP 1/RNP 2 Practice: Site visit, Flying an approach demonstration	Lecture: Requirements of specific RNAV and RNP specifications (Required navigation performance approach (RNP APCH), Required navigation performance authorisation required approach (RNP AR APCH), Advanced required navigation performance (A-RNP) Practice: Site visit, Flying an approach demonstration

15th week: 2nd drawing week

Requirements

A, for a signature:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface

B, for grade:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

Communication IFR (ATPL)

Subject group: Professional Compulsory Subjects – ATP(A) Model curriculum number: 37 Code:_MK3COMIR01HX20-EN ECTS Credit Points: 1 Evaluation: authority exam Year, Semester: 2nd year, 2nd semester Its prerequisite(s): -Further courses are built on it: No Number of teaching hours/week (lecture + practice): 1+0

Topics:

The course teaches the basic knowledge of Communication IFR to demonstrate a level that grants a successful authority exam according to FCL.515 ATPL — Training course and theoretical knowledge examinations.

The course covers the following main areas and give thorough information on:

General operating procedures, relevant weather information terms (IFR), action required to be taken in case of communication failure, distress and urgency procedures, general principles of VHF propagation and allocation of frequencies, morse code

By conducting the course the student will have the knowledge recommended by the EU legislation (AMC1 FCL.310; FCL.515 (b); FCL.615 (b) and will understand the legal background and basis of aviation, learn the structure and sources of the rules.

Literature:

Compulsory:

• CAE OXFORD AVIATION ACADEMY (UK), Communications, 2015, ISBN: 978 1 90620 277 4

1 st week Registration week	
2 nd week:	3 rd week:
Lecture:	Lecture:
IFR COMMUNICATIONS, CONCEPTS	IFR COMMUNICATIONS, CONCEPTS
Associated terms:	Associated terms:
Meanings and significance	Q-code groups commonly used in
Air Traffic Services abbreviations,	radiotelephony (RT) air – ground
Practice: practical examples	communications,
	Categories of messages
	Practice: practical examples
4 th week:	5 th week:
Lecture:	Lecture:
IFR COMMUNICATIONS, GENERAL	IFR COMMUNICATIONS, GENERAL
OPERATING PROCEDURES	OPERATING PROCEDURES
Transmission standards:	Transmission standards:
Transmission of letters	Transmission techniques
Transmission of numbers	Standard words and phrases (relevant RTF
Transmission of time	phraseology included)
Practice: practical examples	Practice: practical examples

Lecture:

IFR COMMUNICATIONS, GENERAL OPERATING PROCEDURES Transmission standards:

RT call signs for aeronautical stations including use of abbreviated call signs

Practice: practical examples

Lecture:

IFR COMMUNICATIONS, GENERAL OPERATING PROCEDURES Transmission standards:

RT call signs for aircraft including use of abbreviated call signs Transfer of communication Test procedures including readability scale **Practice:** practical examples

8th week: 1st drawing week

9th week:

Lecture:

IFR COMMUNICATIONS, GENERAL OPERATING PROCEDURES

Transmission standards:

Read-back and acknowledgement requirements

Radar procedural phraseology

Level changes and reports

Data link messages

Practice: practical examples

11th week:

Lecture:

IFR COMMUNICATIONS, VOICE COMMUNICATION FAILURE

Required action:

Action required to be taken in case of communication failure

Practice: practical examples

Practice: practical examples

13th week:

Lecture:

IFR COMMUNICATIONS, VHF PROPAGATION AND ALLOCATION OF FREQUENCIES *General Principles*: Spectrum, bands, range

10th week:

Lecture:

IFR COMMUNICATIONS, RELEVANT WEATHER INFORMATION *Aerodrome weather*: Aerodrome weather terms, Weather broadcast **Practice:** practical examples

12th week:

Lecture:

IFR COMMUNICATIONS, DISTRESS AND URGENCY PROCEDURES Signals and procedures: Distress Urgency Practice: practical examples 14th week: Lecture: IFR COMMUNICATIONS, OTHER COMMUNICATIONS Weather observations, Morse code:

Meteorological observations, Use of Morse code

Practice: practical examples

15th week: 2nd drawing week

Requirements

A, for a signature:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

B, for grade:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

5th semester

Microeconomics and Economical Processes of Enterprises

Subject group: Economics and Humanities – Faculty of Engineering Model curriculum number: 11 Code: MK3MIKVM04XX17-EN ECTS Credit Points: 3 Evaluation: exam Year, Semester: 3rd year, 1st semester Its prerequisite(s): Economics for Engineers Further courses are built on it: No Number of teaching hours/week (lecture + practice): 1+2

Topics:

Basic concepts of Economics and Microeconomics. Consumers Preferences and the Concept of Utility. Consumer's demand, types of elasticity of demand. Examination of Firm Behaviour. Production and cost theory. Perfectly competitive markets. Imperfect competition and market structures. Strategic behaviour at the market.

Literature:

Compulsory:

- Besanko, David Breautigam, Ronald R. (2014): Microeconomics. Fifth Edition (International Student version). John Wiley and Sons, Inc., New York. ISBN: 978-1-118-71638-0
- Besanko, David Breautigam, Ronald R.: Microeconomics. Study Guide. Third Edition. John Wiley and Sons, Inc., New York, 2008.
- Judit T. Kiss (2015): Introduction to Microeconomics for Engineers and Technical Managers. Debrecen University Press. ISBN: 978-963-318-469-1.
- or
- N. Gregory Mankiw Mark P. Taylor (2011): Microeconomics, 2nd edition. South-Western Cenagage Lerrning.
- Gregory Mankiw (2006): Principles of Microeconomics Study Guide. South-Western College Pub.
- Nellis, J. G. Parker, D. (2006): Principles of Business Economics. Pearson Education, 2006. 2nd edition. ISBN: 0273693069, 9780273693062.

Recommended:

- Samuelson P.A., Nordhaus W.D.: Economics, 18th edition, Academic Internet Publishers Inc., 2006. ISBN: 0072872055
- Parkin, M., Powell, M. & Matthews, K. (2008) Economics. 7th ed. Harlow: Addison Wesley. ISBN-13: 9780132041225

Schedule

1st week Registration week

2nd week:

Lecture: Microeconomics and Macroeconomics, models in Economics. Resources. Key analytical tools. Efficiency. Market mechanism, Demand and supply analysis. Demand curves, Supply curves; shift in demand and supply.

Practice: Calculation/team problems: equilibrium price and quantity; market demand and individual demand; shifts versus movements along the demand curve (supply curve); market supply and individual supply; shifts versus movements along the supply curve.

4th week:

Lecture: Demand and supply together, market equilibrium. The elasticity of demand (price elasticity of demand, cross price elasticity of demand, income elasticity of demand). The elasticity of supply. Total revenue and the price elasticity of demand. Application of elasticity of demand. Energy and price elasticity. Types of goods (substitutes, complements, independents).

Practice: Calculation/team problems: Calculation of elasticity of demand, relationship between price elasticity of demand and total revenue.

6th week:

Lecture: Production. Inputs and production function. Total product function. Marginal product of labour and average product of labour.

3rd week:

Lecture: Consumer theory, consumer preferences, Utility theory. Cardinal ranking. Total utility, marginal utility. Principle of diminishing marginal utility. Utility and demand. Individual and market demand functions. Consumer surplus. Condition of optimal choice.

Practice: Calculation/team problems: Relationship between utility and demand. Individual and market demand functions. Consumer surplus

5th week:

Lecture: Business organizational structures. Business objectives. Types of corporation, forms of business. Market environment (domestic, international environment, markets of products, services and labour). Models of the firm's pricing decisions, costs estimation and decision. Sources of Cost efficiency. Business performance, business strategy.

Practice: Calculation/team problems and case study examination: Firm's pricing decisions, costs estimation and decision. Sources of Cost efficiency.

7th week:

Lecture: Costs of production. (Total, fixed and variable costs, marginal and variable cost). The relationship between marginal and average cost. Total revenue, total profit curves. Calculating problems (types of cost,

Practice: Calculation/team problems: Average product of labour (capital), marginal product of labour (capital), relationship between marginal product and average product.	relationship between cost and profit. opportunity cost). Practice: Calculation/team problems: Total, fixed and variable costs; marginal and average costs. The relationship between marginal cost and average cost.
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Main characteristics of perfect competition, marginal cost, average costs of production, profit-maximizing output, shut down and breakeven point, the competitive firm's supply curve. Calculating problems (marginal average, total revenue, average and marginal profit, profit- maximizing output, marginal cost curve and supply curve).	Lecture: Individual and market supply curve, main condition of the profit maximization and cost minimization, Cost- benefit analysis, economical examinations. Practice: Calculation/team problems: Profit maximization condition for competitive market.
Practice: Mid-Term Test I	
11 th week:	12 th week:
 11th week: Lecture: Why Monopoly arise, Monopoly (the profit-maximization condition; average revenue, marginal revenue, total revenue curves). Problems (calculation of the profitmaximization output and price. Relationship between marginal revenue and linear demand curve). 	Lecture: Capturing surplus – Price discrimination First-degree price discrimination, second-degree price discrimination and third- degree price discrimination. Consumer surplus, producer surplus, deadweight loss. The welfare cost of Monopoly. Practice: Calculation/team problems:
Lecture: Why Monopoly arise, Monopoly (the profit-maximization condition; average revenue, marginal revenue, total revenue curves). Problems (calculation of the profit- maximization output and price. Relationship between marginal revenue	Lecture: Capturing surplus – Price discrimination First-degree price discrimination, second-degree price discrimination and third- degree price discrimination. Consumer surplus, producer surplus, deadweight loss. The welfare cost of Monopoly.
Lecture: Why Monopoly arise, Monopoly (the profit-maximization condition; average revenue, marginal revenue, total revenue curves). Problems (calculation of the profit- maximization output and price. Relationship between marginal revenue and linear demand curve). Practice: Calculation/team problems: Profit	Lecture: Capturing surplus – Price discrimination First-degree price discrimination, second-degree price discrimination and third- degree price discrimination. Consumer surplus, producer surplus, deadweight loss. The welfare cost of Monopoly. Practice: Calculation/team problems: Monopoly versus perfect competition.
Lecture: Why Monopoly arise, Monopoly (the profit-maximization condition; average revenue, marginal revenue, total revenue curves). Problems (calculation of the profit- maximization output and price. Relationship between marginal revenue and linear demand curve). Practice: Calculation/team problems: Profit maximization condition for monopoly.	Lecture: Capturing surplus – Price discrimination First-degree price discrimination, second-degree price discrimination and third- degree price discrimination. Consumer surplus, producer surplus, deadweight loss. The welfare cost of Monopoly. Practice: Calculation/team problems: Monopoly versus perfect competition. Producer surplus and deadweight loss.

15th week: 2nd drawing week

Requirements

A, for a signature:

Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three occasions during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students cannot take part in any practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late counts as an absence. In case of further absences, a medical certification needs to be presented. Missed practice classes must be made up for at a later date, being discussed with the tutor.

During the semester, there are two tests: the mid-term test on the 7^{th} week and the end-term test on the 15^{th} week. Students must sit for the tests.

B, for a grade (ESE):

The minimum requirement of the mid-term, the end-term test and the teamwork is 50% separately. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following table:

0-49 % = fail (1); 50-62 % = pass (2); 63-75 % = satisfactory (3); 76-89 % = good (4); 90-100 % = excellent (5)

If the score of any test is below 50%, the student once can take a retake test of the whole semester material.

Quality and Technical Management

Subject group: Economics and Humanities – Faculty of Engineering Model curriculum number: 12 Code: MK3MINMM04XX17-EN ECTS Credit Points: 3 Evaluation: exam Year, Semester: 3rd year, 1st semester Its prerequisite(s): -Further courses are built on it: No Number of teaching hours/week (lecture + practice): 1+2

Topics:

The aim of the course is to provide students with a comprehensive picture of an organization's operations and the associated management and organizational roles and tasks. The aim of the course is to give students the opportunity to share with the company's quality management techniques, the application of which in the European Union, as well as in Hungary, is an essential element of market competitiveness.

Literature:

Compulsory:

- Nick Milton, Patrick Lambe: The Knowledge Manager's Handbook, Kogen Page, London, 2016
- Ranulfo P. Payos, Ernesto G. Espinosa, Orlando S. Zorilla: Organization and Management, K12, 2016
- Ramani S: Improving Business Performance: A Project Portfolio Management Approach, CRC Press, 2016

Schedule

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Basics of Quality management	Lecture: The role of quality management in
Practice: Analyze examples	the industry
	Practice: PDCA project
4 th week:	5 th week:
Lecture: Process Management	Lecture: Quality Planning
Practice: Create a flowchart	Practice: Developing a Quality Plan
6 th week:	7 th week:
Lecture: Quality Management Methods I	Lecture: Quality Management Methods II
Practice: Ishikawa, Pareto Analysis, 5W	Practice: QFD, Kano model, 5s, 8D report
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Engineering management	Lecture: Company and its surroundings
Practice: Case study	Practice: SWOT, Pestle analyzes
11 th week:	12 th week:
Lecture: Management functions, manager	Lecture: Organization Theory
roles, tasks	Practice: Process Development, Project
Practice: Situational tasks	Management
13 th week:	14 th week:
Lecture: Human Resource Management	Lecture: Innovation Management
Practice: Recruitment, selection, work planning	Practice: Business Plan
15 th week: 2 nd drawing week	

Requirements

A, for a signature:

Participation at lectures is compulsory. Students must attend lectures and may not miss more than three of them during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at lectures will be recorded by the lecturer. Being late counts as an absence. In case of further absences, a medical certification needs to be presented. Missed lectures must be made up for at a later date, being discussed with the tutor.

Students have to write two midterm tests during the semester. The first (40 points max) in the 8th, the second (40 points max) in the 14th week. At the end of the semester everybody will get a seminar grade on the basis of the table below:

0-39 = Fail (1); 40-50 = Close fail (2); 51-60 = Improvement needed (3); 61-70 = Very good (4); 71-80 = Excellent (5)

If somebody fails then he has to write both tests in the 1st week of the exam period again. If the result is 40 points (50%) or better, then he can take an exam. If somebody has to repeat his midterm tests then his seminar grade cannot be better than (2).

There will be homework from week to week. Only students who have handed in all their homework at the time of the midterm test will be allowed to write it. The problems in the midterm tests will be selected from the homework assignments.

B, for a grade:

Everybody will get an exam grade for their exam. The final grade will be the average of the seminar and exam grade. If it is for example (3.5) then the lecturer decides if it is (3) or (4).

Environmental Protection and Dangerous Goods

Subject group: Economics and Humanities – Faculty of Engineering Model curriculum number: 13 Code: MK3EPDGK04RX17-EN ECTS Credit Points: 2 Evaluation: mid-semester grade Year, Semester: 3rd year, 1st semester Its prerequisite(s): -Further courses are built on it: No Number of teaching hours/week (lecture + practice): 0+2

Topics:

According to the environment protection part of subject, the most important topics of environmental protection are introduced to the students. It includes the general

knowledges and global issues of environmental protection and managements: air quality, water protection, soil protection, noise protection, and waste management side topics.

The environmental issues of air transport. Environmental policies of International Civil Aviation Organization (ICAO) and International Air Transport Association (IATA). IATA goals to assist airlines in improving their environmental performance: alternative fuels, carbon offset program, environmental assessment, fuel and emission data, cargo sustainability.

Dangerous goods: It involves the basics of safety and transportation of dangerous goods (basics of dangerous goods, hazard and handling labels, etc.) ICAO Dangerous Panel and Dangerous Goods Regulations (DGR) of IATA: global reference for shipping dangerous goods by air, shipment features and documentation.

Literature:

Recommended:

- Gilbert M. Masters, Wendell P. Ela: Introduction to Environmental Engineering and Science, Pearson New International Edition, 3/E, Pearson, 2013, ISBN:9781292025759
- Jerry A. Nathanson, Richard A. Schneider: Basic Environmental Technology, Pearson, 2015, ISBN:978-0-13-284014-9
- ICAO, IATA standards, manuals, and guidelines

Schedule

1st woold Devictorian woold

1 st week Registration week	
 2nd week: Basics of Environmental Protection and Environmental Management Practice: Introduction to environmental protection; Global issues on environmental protection, the environmental issues of air transport 	3rd week: Air Quality and Air Quality Control Practice: Basics of air pollution control, processes in the atmosphere, greenhouse gases, ozone layer, smog, acid rain
4 th week: Water and Soil Protection Practice:Water protection and quality, pollutants Protection of soil quality	 5th week: Environmental Noise, Waste Management Practice: The basics of environmental noise, measuring devices and techniques Waste management, possibilities, disposal, techniques and hazardous waste
6th week: The environmental issues of air transport	7th week: The environmental issues of air transport
Practice: Environmental policies of International Civil Aviation Organization (ICAO).	Practice: Environmental policies of International Air Transport Association (IATA)
8 th week: 1 st drawing week	

 10th week: Transportation of dangerous goods Practice: Transportation of dangerous goods (basics of dangerous goods, hazard and handling labels, etc.)
 12th week: Transportation of dangerous goods Practice: ICAO Dangerous Panel
14th week: Mid-semester TEST

15th week: 2nd drawing week

Requirements

A, for a signature:

Attendance to the practices (absence up to the permissible level)

B, for grade:

The final grade will be the average of the tests. Each test hast to be at least 50%.

Manufacturing Technologies

Subject group: Professional Compulsory Subjects – Faculty of Engineering Model curriculum number: 23 Code: MK3GYARG04RX17-EN ECTS Credit Points: 4 Evaluation: mid-semester grade Year, Semester: 3rd year, 1st semester Its prerequisite(s): Aircraft Technology Further courses are built on it: No Number of teaching hours/week (lecture + practice): 2+2

Topics:

During this semester, the students learn the types of cutting machines, devices and tools. The students will know the types of basic cutting technologies (turning, drilling, milling, planning, grinding, etc.) and their characteristics. Introduction of the basic industrial design- and operation documentation procedure in manufacturing. Primary forming processes (casting, powder metallurgy, metallurgical, hot forming processes). After that,

students will learn designing basic manufacturing tasks and calculating the necessary technological parameters for a given workpiece.

Literature:

Compulsory:

Fritz Klocke:Manufacturing Processes I, Cutting,RWTH Edition, RWTH Aachen University, p. 524, ISBN 978-3-642-11978-1

John A. Schey:Introduction to Manufacturing Processes,McGraw – Hill Book Company, 1977., p. 392., ISBN 0-07-055274-6

Prakash M. Dixit, Uday S. Dixit: Modelling of Metal Forming and Machining Processes, Springer-Verlag, 2008, ISBN 978-1-84996-749-5

Heinz Tschaetsch: Metal Forming Practise: Processes - Machines – Tools, Springer-Verlag Berlin Heidelberg, 2006., ISBN 978-3-642-06977-2

Recommended:

James G. Bralla: Handbook of Manufacturing Processes, First Edition, Industrial Press Inc., New York, 2007, ISBN 0-831 1-3179-9

Helmi A. Youssef, Hassan El – Hofy: Machining Technology, Machine tools and operations, CRC Press, United States of Amerika, p. 672, ISBN 978-1-4200-4339-6

J. Beddoes, M. J. Bibby: Principles of Metal Manufacturing Processes, 1999, p. 337, ISBN 0 340 73162 1

1st week Registration week	
2nd week:	3rd week:
Lecture: The basic definitions of manufacturing processes, the types of	Lecture: Process of chip formation, tool wear and tool life
machine tools Practice: Introducing of the cutting laboratory and machine tools (cutting laboratory)	Practice: Calculation tasks for tool wear and tool life
4th week:	5th week:
Lecture: The process and tools of turning technologies	Lecture: The process and tools of drilling and counterbore technologies
Practice: Designing of turning technology	Practice: Designing of drilling and counterbore technologies
6th week:	7th week:
Lecture: The process and tools of milling technologies	Lecture: The process and tools of grinding technologies
Practice: Designing of milling technologies	Practice: Designing of grinding technology

9th week:	10th week:	
Lecture: History of metal forming. Definitions, advantages of metal forming. Bulk deformation processes. Sheet metal	Lecture: Properties ofmaterials. Industrial materials. The uniaxial tensile test. Upsetting test.	
forming processes.	Practice: Basic studies of Computer Aided	
Practice: The basic studies of technological planning on CNC machines, cutting tool selection.	Manufacturing (CAM). The types of manufacturing systems	
11th week:	12th week:	
Lecture: Classification of manufacturing processes (casting, forming, material removal, joining). Advantages of casting. Casting terminology. Sand casting.	Lecture: Classification of different forming processes. Types of rolling. Rolling operations. Equipment of rolling, rolling mills. Thread rolling, ring rolling.	
Practice: Planning and finite element simulation of cold rolling technology (SolidWorks and Simufact Forming).	Practice: Planning and finite element simulation of cold rolling technology (SolidWorks and Simufact Forming).	
13th week:	14th week:	
Lecture: Classification of forging operations. Types of forging dies. Overview of metal forming of sheet metals. Bending and deep drawing.	Lecture: Manufacturing of polymers. Major processes (extrusion, injection molding, blow molding, thermoforming, rotomolding).	
Practice: Planning and finite element simulation of die forging technology (SolidWorks and Simufact Forming).	Practice: Planning and finite element simulation of die forging technology (SolidWorks and Simufact Forming).	
15th week: 2nd drawing week: Test II on metal forming technologies		

8th week: 1st drawing week : Test I on cutting technologies

Requirements

A, for a signature:

Students have to visit the lectures and seminars. Three absences are acceptable during the seminar. Students have to write two tests from the two parts of the lectures and seminars (cutting technologies and metal forming technologies). They have to write them for minimum at a sufficient level. Based on these result they will get the final practice mark.

B, for a grade:

The course ends in mid-semester grade. Based on the average of the marks of the planning task and the average of the test results, the mid-semester grade is calculated as an average of them:

grade of the planning task

average grade of the two tests

The minimum requirement for the mid-term and end-term tests is 60%. Based on the score of the tests separately, the grade for the tests is given according to the following table:

0 - 59 % = fail (1); 60 - 69 % = pass (2); 70 - 79 % = satisfactory (3); 80 - 89 % = good (4); 90 - 100 % = excellent (5)

If the score of any test is below 60, a student once can take a retake test covering the whole semester material.

Aircraft General Knowledge II - Airframe, Systems, Power Plants (ATPL)

Subject group: Professional Compulsory Subjects – ATP(A) Model curriculum number: 38 Code: MK3AGK2R04HX17-EN ECTS Credit Points: 3 Evaluation: authority exam Year, Semester: 3rd year, 1st semester Its prerequisite(s): Aircraft General Knowledge I - Airframe, Systems, Power Plants (ATPL) Further courses are built on it: No Number of teaching hours/week (lecture + practice): 5+0

Topics:

The course (Part I and II together) teaches the comprehensive knowledge of Aircraft General Knowledge — Airframe/Systems/Powerplant to demonstrate a level that grants a successful authority exam according to FCL.515 ATPL — Training course and theoretical knowledge examinations.

Part II of the course covers the following main areas and give thorough information on:

Anti and de-icing systems, fuel system, smoke and fire protection and detection systems, AC electrics, switches, generators and alternators, aircraft electric power system, turbine engines, air inlets, compressors, combustion chambers, exhaust, thrust, auxiliary power units, bleed air.

By conducting the course the student will have the knowledge recommended by the EU legislation (AMC1 FCL.310; FCL.515 (b); FCL.615 (b) and will understand the complex technological background, structures, solutions used in airframes, systems and powerplants in aviation.

Learning Objectives (LOs) published by the European Comission are used when developing the Part-FCL theoretical knowledge elements of the course.

The course is aimed to contribute to the achievement of safe flight during their proposed pilot career. It is crucial that a pilot could be able to recognize the hazard and apply for the well-known procedures in this matter during a flight.

Literature:

Compulsory:

- CAE OXFORD AVIATION ACADEMY (UK), Airframes and Systems, 2015, ISBN: 978 1 90620 265 1
- CAE OXFORD AVIATION ACADEMY (UK), Electrics and electronics, 2015, ISBN: 978 1 90620 266 8
- CAE OXFORD AVIATION ACADEMY (UK), Powerplant, 2015, ISBN:978 1 90620 267 5

Schedule

1 st week Registration week	
2 nd week:	3 rd week:
Lecture and practice: Flight control systems	Lecture and practice: Flight controls
4 th week:	5 th week:
Lecture and practice: Powered flying controls	Lecture and practice: Ice and rain protection
6 th week:	7 th week:
Lecture and practice: Fuel systems	Lecture and practice: AC electrics – Basics, alternators
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture and practice: AC electrics – Aircraft systems, transformers	Lecture and practice: AC electrics – AC motors, semiconductors, logic gates
11 th week:	12 th week:
Lecture and practice: Gas turbines – Basic principles	Lecture and practice: Gas turbines – Main engine components
13 th week:	14 th week:
Lecture and practice: Gas turbines – Additional components and systems	Lecture and practice: Gas turbines – Engine operation and monitoring
15 th week: 2 nd drawing week	

Requirements

A, for a signature:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

B, for grade:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface

Air Law (ATPL)

Subject group: Professional Compulsory Subjects – ATP(A) Model curriculum number: 39 Code: MK3AIRLR04HX17-EN ECTS Credit Points: 2 Evaluation: authority exam Year, Semester: 3rd year, 1st semester Its prerequisite(s): -Further courses are built on it: No Number of teaching hours/week (lecture + practice): 3+0

Topics:

The course teaches the comprehensive knowledge of Air Law to demonstrate a level that grants a succesfull authority exam according to FCL.515 ATPL - Training course and theoretical knowledge examinations.

The course covers the following main areas and give thorough information on: rules of the air, procedures for air navigation services: aircraft operations, air traffic services and air traffic management, aeronautical information service, aerodromes or heliports, facilitation, search and rescue, security, aircraft accident and incident investigation, international law: conventions, agreements and organisations, airworthiness of aircraft, aircraft nationality and registration marks, personnel licensing

By conducting the course the student will have the knowledge recommended by the EU legislation (AMC1 FCL.310; FCL.515 (b); FCL.615 (b) and will understand the legal background and basis of aviation, learn the structure and sources of the rules.

Learning Objectives (LOs) published by the European Comission are used when developing the Part-FCL theoretical knowledge elements of the course.

The course aims to contribute to the achievement of safe flight during their proposed pilot career. It is crucial for a pilot to be able to recognize hazards during a flight and to apply the right procedures in such cases.

Literature:

Compulsory:

• CAE OXFORD AVIATION ACADEMY (UK), Air Law, 2015, ISBN: 978 1 90620 264 4

Schedule

1 st week Registration week		
2 nd week:	3 rd week:	
Lecture and practice: International Law: conventions, agreements and organisations	Lecture and practice: Airworthiness of aircraft, aircraft nationality and registration marks	
4 th week:	5 th week:	
Lecture and practice: Personnel licencing	Lecture and practice: Rules of the air	
6 th week:	7 th week:	
Lecture and practice: Procedures for air navigation services – aircraft operations	Lecture and practice: Air traffic services and air traffic management – ICAO Annex 11 – Air traffic services	
8 th week: 1 st drawing week		
9 th week:	10 th week:	
Lecture and practice: Air traffic services and air traffic management – ICAO Doc 4444 – Air Traffic Management	Lecture and practice: Aeronautical Information service	
11 th week:	12 th week:	
Lecture and practice: Aerodromes – General, physical characteristics, aerodrome design	Lecture and practice: Aerodromes – Visual aids for navigation, aerodrome operations	
13 th week:	14 th week:	
Lecture and practice: Aerodromes – facilitation	Lecture and practice: Aerodromes –Search and rescue, Security	
15th weak 20d drawing weak		

15th week: 2nd drawing week

Requirements

A, for a signature:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

B, for grade:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

Flight Planning and Monitoring (ATPL)

Subject group: Field-Specific Vocational Subjects – ATP(A) Model curriculum number: 46 Code: MK3FLPMR03HX17-EN ECTS Credit Points: 3 Evaluation: authority exam Year, Semester: 3rd year, 1st semester Its prerequisite(s): -Further courses are built on it: No Number of teaching hours/week (lecture + practice): 4+2

Topics:

The course teaches the basic knowledge of Flight Planning and Monitoring to demonstrate a level that grants a succesfull authority exam according to FCL.515 ATPL — Training course and theoretical knowledge examinations.

The course covers the following main areas and give thorough information on:

Air information publications, topographical chart, weather chartsflight planning for VFR flights, flight planning for IFR flights, fuel planning, pre-flight preparation, ATS flight plan, flight monitoring and in-flight re-planning, point of no safe return, critical point gp-equal time point

By conducting the course the student will have the knowledge recommended by the EU legislation (AMC1 FCL.310; FCL.515 (b); FCL.615 (b) and will understand the legal bacnground and basis of aviation, learn the structure and sources of the rules.

Literature:

Compulsory:

• CAE OXFORD AVIATION ACADEMY (UK), FlightPlanning and Monitoring, 2015, ISBN: 978 1 90620 270 5

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Flight planning for VFR flights, VFR navigation plan, Routes, airfields, heights and altitudes from VFR charts, Courses and distances from VFR charts	Lecture: Flight planning for VFR flights, Aerodrome charts and aerodrome directory, Communications and radio- navigation planning data
Practice: VFR planning examples	Practice: Completion of navigation plan VFR flights

4 th week:	5 th week:
Lecture: : Flight planning for IFR flights, IFR	Lecture:
navigation plan, Airways and routes, Courses and distances from en route charts, Altitudes, Standard Instrument Departures (SIDs) and Standard Arrival Routes (STARs)	Flight planning for IFR flights, IFR navigation plan, Instrument-approach charts, Communications and radio-navigation planning data Practice: Completion of navigation plan IFR
Practice: IFR planning examples	flights
6 th week:	7 th week:
Lecture: Fuel planning, General, Pre-flight fuel planning for commercial flights, Taxiing fuel, Trip fuel, Reserve fuel and its components, Extra fuel, Calculation of total fuel and completion of the fuel section of the navigation plan (fuel log)	Lecture: Fuel planning, Specific fuel- calculation procedures, Decision-point procedure, Isolated-aerodrome procedure, Predetermined point procedure, Fuel- tankering, Isolated-heliport procedure Practice: Procedure examples, case studies
Practice: Fuel calculation examples	
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Pre-flight preparation, NOTAM briefing, Ground facilities and services, Departure, destination and alternate aerodromes, Airway routings and airspace structure Practice: NOTAM examples, case studies	Lecture: Pre-flight preparation, Meteorological briefing, Extraction and analysis of relevant data from meteorological documents, Extraction and analysis of relevant data from meteorological documents, Update of navigation plan using the latest meteorological information, Update of
	mass and balance, performance data, fuel log
	Practice: Meteorological briefing examples, case studies
11 th week:	12 th week:
Lecture: Pre-flight preparation, Point of Equal Time (PET) and Point of Safe Return (PSR), Point of Equal Time (PET), Point of Safe Return (PSR) Practice: Team work, case presentation	Lecture: ICAO flight plan (ATS Flight Plan), Individual Flight Plan, Format of Flight Plan, Completion of an ATS Flight Plan (FPL), Repetitive Flight Plan, Submission of an ATS Flight Plan (FPL) Practice: Airport Tower visit, Flight Plan
toth I	examples
13 th week:	14 th week:
Lecture: Flight monitoring and in-flight replanning, Flight monitoring, Monitoring	Lecture: Flight monitoring and in-flight replanning II, Flight monitoring, In-flight

of	track	and	time,	In-flight	fuel	replanning	in	case	of	deviation	from
	-		-		-	planned dat	a				
		-	ht repla nned dat	nning in ca :a	ise of	Practice: Ca	se s	tudies			
Prac	tice: Ca	se stud	ies								

15th week: 2nd drawing week

Requirements

A, for a signature:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

B, for grade:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface

6th semester

Environment, Health, Safety and Ergonomics (Basics of EHS)

Subject group: Professional Compulsory Subjects – Faculty of Engineering Model curriculum number: 24 Code: MK3EHSAK04RX17-EN ECTS Credit Points: 4 Evaluation: mid-semester grade Year, Semester: 3rd year, 2nd semester Its prerequisite(s): -Further courses are built on it: No Number of teaching hours/week (lecture + practice): 2+2

Topics:

The subject covers three main topics:

Environment (E): The most important topics related to environmental protection are introduced to students. The subject includes air quality, noise protection, water protection, soil protection, and waste management side topics.

Health (H): The basic concepts of labor and health are discussed. The impact of work on health and the health impact on working ability is also a side topic. The fundamentals of occupational health and work hygiene are also involved.

Safety (S): It involves the basics of labor safety and fire protection. The lectures discuss the personal, material and organizational requirements for safe work, ergonomic fundamentals, personal protective equipment, work safety reviews, employer checks, and workplace risk assessment. Industrial safety and security is also a side topic.

The lectures introduce the most important aspects and the practices focus on examples and plant visits.

Literature:

Recommended:

- Gilbert M. Masters, Wendell P. Ela: Introduction to Environmental Engineering and Science, Pearson New International Edition, 3/E, Pearson, 2013, ISBN:9781292025759
- David L. Goetsch, Occupational Safety and Health for Technologists, Engineers, and Managers, 8th Edition, Pearson, 2015, ISBN:9780133484175
- Richard T. Wright, Environmental Science, Pearson, 2017, ISBN:9780134011271

1 st week Registration week	
2ndweek:BasicsofEnvironmentalProtectionandEnvironmentalManagementEnvironmentalLecture:Introductiontoenvironmentalprotection	3 rd week: Air Quality Control Lecture: Basics of air pollution control, processes in the atmosphere, greenhouse gases, ozone layer, smog, acid rain Practice: Exercises in connection with air
Practice: Global issues on environmental protection	pollution
4 th week: Environmental Noise	5 th week: Water Protection
Lecture: The basics of environmental noise Practice: Noise measuring devices and techniques	Lecture: Water protection and quality, pollutants Practice: Practice in connection with water
	protection (plant visit: wastewater treatment plant)
6 th week: SoilProtection	7 th week: Waste Management
Lecture: Protection of soil quality Practice: Practice in connection with soil protection	Lecture: Waste management, possibilities, disposal, techniques and hazardous waste Practice: Practice in connection with waste management (plant visit)
8 th week: 1 st drawing week	
 9th week: Basics of labor safety and fire protection Lecture: Personal, material and organizational requirements for safe work, ergonomic fundamentals Practice: Practice in connection with labor safety I. (plant visit) 	 10th week: Occupational Safety Lecture: Personal protective equipment, work safety reviews, employer checks, workplace risk assessment Practice: Practice in connection with labor safety II. (plant visit)
protectionLecture:Personal, material and organizational requirements for safe work, ergonomic fundamentalsPractice:Practice in connection with labor	Lecture: Personal protective equipment, work safety reviews, employer checks, workplace risk assessment Practice: Practice in connection with labor
 protection Lecture: Personal, material and organizational requirements for safe work, ergonomic fundamentals Practice: Practice in connection with labor safety I. (plant visit) 11th week: Labor and Health Lecture: The impact of work on health and the health impact on working ability Practice: Practice in connection with occupational health I. 13th week: Industrial Safety and Security 	 Lecture: Personal protective equipment, work safety reviews, employer checks, workplace risk assessment Practice: Practice in connection with labor safety II. (plant visit) 12th week: Occupational Health and Work Hygiene Lecture: Fundamentals of occupational health and work hygiene Practice: Practice in connection with
 protection Lecture: Personal, material and organizational requirements for safe work, ergonomic fundamentals Practice: Practice in connection with labor safety I. (plant visit) 11th week: Labor and Health Lecture: The impact of work on health and the health impact on working ability Practice: Practice in connection with occupational health I. 	 Lecture: Personal protective equipment, work safety reviews, employer checks, workplace risk assessment Practice: Practice in connection with labor safety II. (plant visit) 12th week: Occupational Health and Work Hygiene Lecture: Fundamentals of occupational health and work hygiene Practice: Practice in connection with occupational health II.

15th week: 2nd drawing week

Requirements

A, for a signature:

Attendance to the practices (absence up to the permissible level)

B, for grade:

The final grade will be the average of the tests. Each test hast to be at least 50%.

Human Performance (ATPL)

Subject group: Professional Compulsory Subjects – ATP(A) Model curriculum number: 40 Code: MK3HUMPR03HX17-EN ECTS Credit Points: 2 Evaluation: authority exam Year, Semester: 3rd year, 2nd semester Its prerequisite(s): -Further courses are built on it: No Number of teaching hours/week (lecture + practice): 3+0

Topics:

The course teaches the basic knowledge of Human Performance to demonstrate a level that grants a successful authority exam according to FCL.515 ATPL — Training course and theoretical knowledge examinations.

The course covers the following main areas and give thorough information on:

Human factors: basic concepts, basic aviation physiology and health maintenance, basic aviation psychology, the circulatory system, oxygen and respiration, the eye and vision, flying and health, stress, behaviour and motivation, cognition in aviation, sleep and fatigue, communication and co -operation, man and machine, decision-making and risk

By conducting the course the student will have the knowledge recommended by the EU legislation (AMC1 FCL.310; FCL.515 (b); FCL.615 (b) and will understand the complex knowledge of human physiology and health, risks, fatigue and decision making process under different flight conditions.

Learning Objectives (LOs) published by the European Comission are used when developing the Part-FCL theoretical knowledge elements of the course.

The course aims to contribute to the achievement of safe flight during their proposed pilot career. It is crucial that a pilot could be able to recognize the hazard and apply for the well-known procedures in this matter during a flight.

Literature:

Compulsory:

• CAE OXFORD AVIATION ACADEMY (UK), Human Performance and limitations, 2015, ISBN: 978 1 90620 271 2

1 st week Registration week	
 2nd week: Lecture: Human factors – basic concepts, Human factors in aviation, Becoming a competent pilot Practice: Factors in training that ensures the future competency of the individual pilot 	3 rd week: Lecture: Safety, Accident statistics, Flight safety concepts, Safety culture Practice: Accident investigation studies
4 th week:	5 th week:
Lecture: Basics of flight psychology, The atmosphere, Respiratory and circulatory system, High-altitude environment Practice: Site visit, demonstration of measurements for Respiratory and circulatory system	Lecture: Man and environment, the sensory system, Central, peripheral and autonomic nervous systems, Vision, Hearing, Equilibrium, Integration of sensory inputs Practice: Site visit, demonstration of measurements for Central, peripheral and autonomic nervous systems, Vision, Hearing
6 th week:	7 th week:
Lecture: Health and hygiene, Personal hygiene, Body rhythm and sleep, Problem areas for pilots, Common minor ailments, Intoxication, Incapacitation in flight Practice: Case studies of sleep problems and incapacitation	Lecture: Basic aviation psychology, information processing, Attention and vigilance, Perception, Memory, Response selection Learning principles and techniques, Motivation Practice: Site visit, demonstration of measurements for Attention and vigilance, Perception, Memory, Response selection
8 th week: 1 st drawing week	
9 th week: Lecture: Human error and reliability, Reliability of human behaviour, Mental models and situation awareness, Theory	10 th week: Lecture: Decision-making, Decision-making concepts, nature of bias and its influence on the decision-making process,

and model of human error, Error generation Practice: Case studies	relationship between risk assessment, commitment and pressure of time on decisionmaking strategies, general idea behind the creation of a model for decision- making; Practice: Decision making case studies
11 th week:	12 th week:
Lecture: Avoiding and managing errors, cockpit management, Safety awareness, Coordination (multi-crew concepts), Cooperation, Communication Practice: Site visit, coordination examples	Lecture: Human behavior, Personality, attitude and behaviour, Individual differences in personality and motivation, Identification of hazardous attitudes (error proneness) Practice: Team work, presentation
13 th week:	14 th week:
Lecture: Human overload and underload, Arousal, Stress, Fatigue and stress management	Lecture: Advanced cockpit automation, advantages and disadvantages, Automation complacency, Working concepts
Practice: Measurement techniques of fatigue	Practice: Site visit, demonstration of automation
15 th week: 2 nd drawing week	

Requirements

A, for a signature:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

B, for grade:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

Mass and Balance (ATPL)

Subject group: Field-Specific Vocational Subjects – ATP(A) Model curriculum number: 47 Code: MK3MASSR03HX17-EN ECTS Credit Points: 2 Evaluation: authority exam Year, Semester: 3rd year, 2nd semester Its prerequisite(s): -Further courses are built on it: No Number of teaching hours/week (lecture + practice): 2+2

Topics:

The course teaches the basic knowledge of Mass and Balance to demonstrate a level that grants a successful authority exam according to FCL.515 ATPL - Training course and theoretical knowledge examinations.

The course covers the following main areas and give thorough information on:

Purpose of mass and balance considerations, loading, fundamentals of cg calculations, mass and balance details of aircraft, determination of cg position, general principles take off, climb and descent, general principles landing, single engine, multi-engine class b take off, climb, cruise, landing, class a aircraft take off, additional take off procedures, take off climb, en route, landing, cargo handling

By conducting the course the student will have the knowledge recommended by the EU legislation (AMC1 FCL.310; FCL.515 (b); FCL.615 (b) and will understand the legal background and basis of aviation, learn the structure and sources of the rules.

Literature:

Compulsory:

• CAE OXFORD AVIATION ACADEMY (UK), Mass and Balance - Performance, 2015, ISBN: 978 1 90620 269 9

1 st week Registration week		
2 nd week:	3 rd week:	
Lecture: Purpose of mass-and-balance considerations, limitations, Importance with regard to structural limitations, Importance with regard to performance, Centre-of-gravity (CG) limitations, Importance with regard to stability and controllability, Importance with regard to performance	Lecture: Loading, Terminology, Mass terms, Load terms (including fuel terms), Mass limits, Structural limitations, Performance limitations,-compartment limitations Practice: Documentation examples	
Practice: Stability calculation		
4 th week:	5 th week:	
Lecture: Loading, Mass calculations, Maximum masses for take-off and landing,	Lecture: Fundamentals of centre-of-gravity calculations, Definition of Centre of Gravity	

traffic load and fuel load, Use of standard masses for passengers, baggage and crew Practice: Mass calculation examples	(CG), Conditions of equilibrium (balance of forces and balance of moments) Practice: Basic calculations of CG
6 th week: Lecture: Mass-and-balance details of aircraft, Contents of mass-and-balance documentation, Datum, moment arm, CG position as distance from datum, CG position as percentage of Mean Aerodynamic Chord (% MAC), Longitudinal- , Lateral CG limits, passenger and cargo compartments, fuel system relevant to mass-and balance considerations	 7th week: Lecture: Mass-and-balance details of aircraft, Determination of aircraft empty mass and CG position by weighing, Weighing of aircraft (general aspects) Practice: Calculation of mass and CG position of an aircraft using weighing data
Practice: Airport visit, demonstration of compartments, fuel system	
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Mass-and-balance details of aircraft, Extraction of basic empty mass and CG data from aircraft documentation, Basic empty mass (BEM) and/or dry operating mass (DOM), CG position and/or moment at BEM/DOM, Deviation from standard configuration	Lecture: Determination of CG position, Methods, Arithmetic method, Graphic method, Index method Practice: Methods examples
Practice: Documentation examples	
11 th week:	12 th week:
Lecture: Determination of CG position, Load and trim sheet, General considerations Practice: Load and trim sheet examples, case studies	Lecture: Determination of CG position, Load sheet and CG envelope for light aeroplanes and for helicopters Practice: Load and trim sheet examples, case studies
13 th week:	14 th week:
Lecture: Determination of CG position, Load sheet for large aeroplanes, Trim sheet for large aeroplanes, Last-minute changes, Repositioning of CG by shifting the load, by additional load or ballast Practice: Load and trim sheet examples, case studies	Lecture: Cargo handling, Types of cargo (general aspects), Floor-area load and running-load limitations in cargo compartments, Securement of load Practice: Airport visit, handling demonstration

15th week: 2nd drawing week

Requirements

A, for a signature:

Refer to the effective version of "Training Guidance for Professional Pilot BSc (Integrated ATP(A) Course) Students". The guidance is available on the university website and the ATO online administrative interface.

B, for grade:

Refer to the effective version of "Training Guidance for Professional Pilot BSc (Integrated ATP(A) Course) Students". The guidance is available on the university website and the ATO online administrative interface.

Performance (ATPL)

Subject group: Field-Specific Vocational Subjects – ATP(A) Model curriculum number: 48 Code: MK3PERFR04HX17-EN ECTS Credit Points: 3 Evaluation: authority exam Year, Semester: 3rd year, 2nd semester Its prerequisite(s): -Further courses are built on it: No Number of teaching hours/week (lecture + practice): 3+3

Topics:

The course teaches the basic knowledge of Performance to demonstrate a level that grants a succesfull authority exam according to FCL.515 ATPL - Training course and theoretical knowledge examinations.

The course covers the following main areas and give thorough information on:

Performance Class B: SE aeroplanes, performance Class B: ME aeroplanes, performance Class A : aeroplanes certificated under CS-25 only

By conducting the course the student will have the knowledge recommended by the EU legislation (AMC1 FCL.310; FCL.515 (b); FCL.615 (b) and will understand the legal background and basis of aviation, learn the structure and sources of the rules.

Literature:

Compulsory:

• CAE OXFORD AVIATION ACADEMY (UK), Mass and Balance - Performance, 2015, ISBN: 978 1 90620 269 9

Schedule

1st week Registration week

2nd week:

Lecture: General information, Performance legislation, Airworthiness requirements according to CS-23 and CS-25, Operational regulations, General performance theory, Stages of flight, Definitions, terms and concepts, Variables influencing performance

Practice: Airworthiness and operations requirements interpretation examples

4th week:

Lecture: Performance class B single-engine aeroplanes, Climb, cruise and descent, Use of aeroplane performance data, Take-off, Climb, Cruise, Landing

Practice: Performance data examples for single engine aeroplanes

6th week:

Lecture: Performance class B multi-engine aeroplanes, Use of aeroplane performance data, Take-off, Climb, Cruise and descent, Landing

Practice: Performance data examples

8th week: 1st drawing week

9th week:

Lecture: Performance class A, Balanced field length concept, Unbalanced field length concept, Runway Length-Limited Take-Off Mass (RLTOM), Take-off climb, Obstacle-limited take-off

Practice: Concept examples

11th week:

Lecture: Performance class A, Cruise, Cruise techniques, Maximum endurance,

3rd week:

Lecture: Performance class B single-engine aeroplanes, Definitions of speeds used, Effect of variables on single-engine aeroplane performance, Take-off and landing

Practice: effects of flap-setting on the ground-roll distance, effects of the different recommended power settings on range and endurance

5th week:

Lecture: Performance class B multi-engine aeroplanes, Definitions of terms and speeds, Effect of variables on multi-engine aeroplane performance, Take-off and landing, Climb, cruise and descent, Landing

Practice: Performance data examples for multi engine aeroplanes

7th week:

Lecture: Performance class A aeroplanes certified according to CS-25 ony, Take-off, Definitions of terms used, Take-off distances, Accelerate-stop distance

Practice: Distance calculations

10th week:

Lecture: Performance class A, Climb, Climb techniques, Influence of variables on climb performance, Use of aeroplane flight data

Practice: Climb examples

12th week:

ruise, Cruise **Lecture:** Performance class A, En route one endurance, engine inoperative, Drift down, Influence of

	Maximum range, Long-range cruise, Influence of variables on cruise performance, Cruise altitudes, Cost Index (CI),Use of aeroplane flight data Practice: Cruise techniques examples	variables on the en route one engine inoperative performance Practice: Determination of en route flight path data, speed during drift down
, , , , , , , , , , , , , , , , , , , ,	13 th week:	14 th week:
on descent performance, Use of aeroplane Landing field-length requirement, Influence flight data of variables on landing performance, Quice	Descent techniques, Influence of variables on descent performance, Use of aeroplane flight data	Landing field-length requirement, Influence of variables on landing performance, Quick turnaround limit, Use of aeroplane flight
pressure altitude on approach and landing		1 , 0
15 th week: 2 nd drawing week	15 th week: 2 nd drawing week	

Requirements

A, for a signature:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

B, for grade:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

Operational Procedures (ATPL)

Subject group: Field-Specific Vocational Subjects – ATP(A) Model curriculum number: 49 Code: MK3OPPRR02HX17-EN ECTS Credit Points: 2 Evaluation: authority exam Year, Semester: 3rd year, 2nd semester Its prerequisite(s): - Further courses are built on it: No Number of teaching hours/week (lecture + practice): 1+2

Topics:

The course teaches the basic knowledge of Operational Procedures to demonstrate a level that grants a succesfull authority exam according to FCL.515 ATPL — Training course and theoretical knowledge examinations.

The course covers the following main areas and give thorough information on:

Operator certification and supervision, operational procedure general requirements, special operational procedures and hazards (general aspects), all weather operations requirements, instrument and equipment, comms and navigation equipment, aeroplane maintenance, transoceanic and polar flight, fire and smoke, pressurisation failure, windshear and microburst, wake turbulence, emergency and precautionary landings, transport of dangerous goods by air, contaminated runways, north atlantic mnps airspace operation

By conducting the course the student will have the knowledge recommended by the EU legislation (AMC1 FCL.310; FCL.515 (b); FCL.615 (b) and will understand the legal bacnground and basis of aviation, learn the structure and sources of the rules.

Literature:

Compulsory:

• CAE OXFORD AVIATION ACADEMY (UK), OperationalProcedures, 2015, ISBN: 978 1 90620 275 0

Schedule

1 st week Registration week									
2 nd week:	3 rd week:								
Lecture: General requirements, ICAO Annex 6, Definitions, General, Operational requirements, Operator certification and supervision Practice: Certification and supervision procedures	Lecture:Generalrequirements,Operational procedures (except long-rangeflight preparation), All-weather operations,Instrumentsandequipment,Communication and navigation equipment,Flight crew, Cabin crew/crew membersother than flight crew								
	Practice: Low-visibility operations, VFR operating minima, RVR								
4 th week:	5 th week:								
Lecture: General requirements, Manuals, logs and records, Flight and duty-time limitations	Lecture: General requirements, Long-range flights, Flight management, Transoceanie and polar flight, MNPS airspace, ETOPS								

and rest requirements, Transport of dangerous goods by air Practice: Flight and duty-time calculation, rostering examples	Practice: Selection of cruising altitude, alternate aerodrome, Polar navigation
6 th week: Lecture: Special operational procedures	7th week: Lecture: Special operational procedures
and hazards (general aspects), Operations Manual, Operating procedures, Aeroplane/helicopter operating matters — type-related Practice: Operation manual presentation	and hazards, Icing conditions, On ground de-icing/anti-icing procedures, types of deicing/ anti-icing fluids, Procedure to apply in case of performance deterioration, on ground/in flight Practice: Usage of de-icing/anti-icing fluids holdover time table, pre-take-off check
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Special operational procedures and hazards, Bird-strike risk and avoidance, Noise abatement, , Influence of the flight procedure (departure, cruise, approach), Influence by the pilot (power setting, low drag) Practice: Noise-abatement procedures	Lecture: Special operational procedures and hazards, Fire and smoke, Carburettor fire, Engine fire, Fire in the cabin, cockpit, cargo compartment, Smoke in the cockpit and cabin, Actions in case of overheated brakes, Decompression of pressurised cabin, Slow decompression, Rapid and explosive decompression Practice: Aircraft Rescue Fire Fighting (ARFF) Training Facility and
	training demonstration
11 th week:	12 th week:
Lecture: Special operational procedures and hazards, Wind shear and microburst, Actions to avoid and actions to take during encounter, Wake turbulence, Cause, List of relevant parameters, Actions to be taken when crossing traffic, during take-off and landing Practice: Wind shear, microburst, wake turbulance case studies	Lecture: Special operational procedures and hazards, Security (unlawful events), ICAO Annex 17, Use of Secondary Surveillance Radar (SSR), Security, Emergency and precautionary landings, Definition, Cause, Passenger information, Action after landing, Evacuation Practice: Unlawful events case studies
13 th week:	14 th week:
Lecture: Special operational procedures and hazards, Fuel jettisoning, Safety aspects, Requirements, Transport of dangerous goods, ICAO Annex 18, Technical Instructions (ICAO Doc 9284), Transport of	Lecture: Special operations, Additional requirements for commercial specialised operations and CAT operations (Part-ORO)

dangerous goods by air; Contaminated runways, Estimated surface friction, friction coefficient, Hydroplaning principles and effects, Procedures, SNOWTAM

Practice: Dangerous goods loading examples; Friction tester in operation, SNOWTAM examples

Flight crew recurrent training and checking, operator proficiency checks, General requirements (Part-SPO), Specialist's responsibilities

Practice: none

15th week: 2nd drawing week

Requirements

A, for a signature:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

B, for grade:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

7th semester

Type Rating Course

Subject group: Moduls Model curriculum number: 51 Code: MK3CREWR04HX17-EN ECTS Credit Points: 5 Evaluation: mid-semester grade Year, Semester: 4th year, 1st semester Its prerequisite(s): Flight Training IV, Internship III Further courses are built on it: No Number of teaching hours/week (lecture + practice): 2+3

Topics:

The objective of the course is to give high quality type rating training for the applicant to operate the Airbus A320 airplane safely under VFR and IFR operations, to understand and operate all systems, to follow SOP in normal, abnormal and emergency situations.

The course is performed on the A320, the basic variant of the entire A320 CEO family (A318 /A319 /A320 /A321). The course consists Upset Recovery Training (UPRT) and Performance-Based Navigation Training (PBN).

Literature:

Compulsory:

- AIRBUS A320 CBT
- Airbus A320 Flight Crew Operating Manual (FCOM)
- Airbus A320 Flight Crew Training Manual (FCTM)
- Airbus A320 Quick Reference Handbook (QRH)
- Airbus A320 Master Minimum Equipment List (MMEL)

Schedule

1st week Registration week

2nd week:

Lecture and Practice: FCOM/FCTM/MMEL/SOP introduction

3rd week:

Lecture and Practice: Aircraft general, Air conditioning system, Cabin pressurizationsystem, Ventillation system,

	Auto flight – genera Flight guidance
4 th week:	5 th week:
Lecture and Practice: Flight augmentation, ACARS interface, Print interface, Communication, Electrical system, Equipment	Lecture and Practice controls, Fuel system system controls
6 th week:	7 th week:
Lecture and Practice: Hydraulic, Ice and rain protection system, Electronic instrument system, ECAM – E/WD and SD, Primary flight display, Navigation display, EFIS controls	Lecture and Practice Navigation
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture and Practice: Oxygen system, Pneumatic system description and controls, Water and waste, Maintenance system, Information system	Lecture and Practice Doors, Cockpit wind
11 th week:	12th week:
Lecture and Practice: PBN training (PBN principles, components, scope Specific RNAV and RNP system functions, On-board performance monitoring and alerting, Abnormal situations, database management, Navigation system functional requirements, Designation of RNAV and RNP specifications, GNSS accuracy and augmentation, Ground- based augmentation system (GBAS), Satellite-based augmentation system (SBAS), Aircraft-based augmentation system (ABAS), Applied procedures on type)	Lecture and Practice factors in aviation, of CRM principles and performance and lin error management, awareness, human attitudes and behave and self-critique, St management, Fatig Assertiveness, situat information acquisi Workload managen communication, Les synergy, delegation
13th week:	14th week:
Lecture and Practice:: Mass&Balance, Performance Training (Take-off performance calculation, Landing	Lecture and Practice (Strategies to devel- mitigate startle effe

Performance, Loadsheet exercise)

Auto flight – general, Flight management, Flight guidance

Lecture and Practice: Fire protection, Flight controls, Fuel system description, Fuel system controls

Lecture and Practice: Landing gear, Lights, Navigation

Lecture and Practice: Auxiliary power unit, Doors, Cockpit windows, Engines

Lecture and Practice: CRM training (Human factors in aviation, General instruction on CRM principles and objectives, Human performance and limitation, Threat and error management, Personality awareness, human error and reliability, attitudes and behaviours, self-assessment and self-critique, Stress and stress management, Fatigue and vigilance, Assertiveness, situational awareness, information acquisition and processing, Workload management and effective communication, Leadership, cooperation, synergy, delegation, decision making)

Lecture and Practice: UPRT Training (Strategies to develop resilience and mitigate startle effect, Type related procedures and techniques for upset recovery, Nose-high recovery strategy,

Nose-low recovery strategy, Stall event recovery)

15th week: 2nd drawing week

Requirements

A, for a signature:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

B, for grade:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

APS MCC and JOC

Subject group: Moduls Model curriculum number: 50 Code: ECTS Credit Points: 5 Evaluation: mid-semester grade Year, Semester: 4th year, 1st semester Its prerequisite(s): Flight Training IV Further courses are built on it: No Number of teaching hours/week (lecture + practice): 2+3

Topics:

The APS MCC training course includes advanced swept-wing jet aeroplane training and airline operations scenario training to equip a pilot with the knowledge, skills, and attitudes required to commence initial type rating training to the standards generally required by a commercial air transport (CAT) operator certified pursuant to Regulation (EU) No 965/2012 (the 'Air OPS Regulation').

Literature:

Compulsory: AIRBUS A320 CBT Airbus A320 Flight Crew Operating Manual (FCOM) Airbus A320 Flight Crew Training Manual (FCTM) Airbus A320 Quick Reference Handbook (QRH)

Airbus A320 Master Minimum Equipment List (MMEL)

Schedule

1st week Registration week

2nd week:

Lecture and Practice: Definitions and terms (MCC definitions, single-pilot and multi-pilot differences, airmanship), Core competencies (technical and nontechnical skills)

4th week:

Lecture and Practice: Communication (Basics (sender, receiver, message, channel, noise etc.), Verbal, non-verbal, image), decision making (Process and biases, Decision making models (FORDEC, DODAR), Time factor, NITS briefing), Golden Rules of Aviation (Fly, navigate, communicate, Use of automation)

6th week:

Lecture and Practice: Standard Operating Procedures (Limitations, Normal procedures, Abnormal and emergency procedures)

8th week: 1st drawing week

9th week:

Lecture and Practice: Type related technical knowledge instruction (Flight augmentation, ACARS interface, Print interface, Communication, Electrical system, Equipment)

11th week:

Lecture and Practice: Type related technical knowledge instruction

3rd week:

Lecture and Practice: SHELL model, CRM (General instruction on CRM principles and objectives, Threat and error management, Personality awareness, human error and reliability, attitudes and behaviours, self-assessment and selfcritique, Fatigue and vigilance, Areas of responsibility (PF/PM responsibilities, common areas, task sharing)

5th week:

Lecture and Practice: Documentation of a commercial jet (FCOM, FCTM, QRH, MEL, OM), Checklists (Introduction, History, Concepts, Methods, Items, Standardisation), Briefing (Background, data, structure, techniques), Callouts (PF/PM roles, Transfer of control, standard basic callouts, type-related callouts)

7th week:

Lecture and Practice: Type related technical knowledge instruction (Aircraft general, Air conditioning system, Cabin pressurizationsystem, Ventillation system, Auto flight – general, Flight management, Flight guidance)

10th week:

Lecture and Practice: Type related technical knowledge instruction (Fire protection, Flight controls, Fuel system description, Fuel system controls)

12th week:

(Hydraulic, Ice and rain protection system, Electronic instrument system, ECAM – E/WD and SD, Primary flight display, Navigation display, EFIS controls)	Lecture and Practice: Type related technical knowledge instruction (Landing gear, Lights, Navigation)
13th week:	14th week:
Lecture and Practice: Type related technical knowledge instruction (Oxygen system, Pneumatic system description and controls, Water and waste, Maintenance system, Information system)	Lecture and Practice: Type related technical knowledge instruction (Auxiliary power unit, Doors, Cockpit windows, Engines)
15th week: 2nd drawing week	

Requirements

A, for a signature:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

B, for grade:

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

Flight Training

Flight Training I

Subject group: Professional Compulsory Subjects - ATP(A)

Model curriculum number: 41

Code: MK3FLT1R02HX17-EN

ECTS Credit Points: 4

Evaluation: mid-semester grade

Year, Semester: 2nd year, 1st semester

Its prerequisite(s): Internship I

Further courses are built on it: Yes

Number of teaching hours/week (lecture + practice): 0+6

Flight Training II

Subject group: Professional Compulsory Subjects – ATP(A) Model curriculum number: 42 Code: MK3FLT2R02HX17-EN ECTS Credit Points: 7 Evaluation: mid-semester grade Year, Semester: 2nd year, 2nd semester Its prerequisite(s): Internship I Further courses are built on it: Yes Number of teaching hours/week (lecture + practice): 0+5

Flight Training III

Subject group: Professional Compulsory Subjects – ATP(A) Model curriculum number: 43 Code: MK3FLT3R02HX17-EN ECTS Credit Points: 6 Evaluation: mid-semester grade Year, Semester: 3rd year, 1st semester Its prerequisite(s): Internship II Further courses are built on it: Yes Number of teaching hours/week (lecture + practice): 0+8 **Flight Training IV**

Subject group: Professional Compulsory Subjects – ATP(A) Model curriculum number: 44 Code: MK3FLT4R02HX17-EN ECTS Credit Points: 6 Evaluation: mid-semester grade Year, Semester: 3rd year, 2nd semester Its prerequisite(s): Internship II Further courses are built on it: Yes Number of teaching hours/week (lecture + practice): 0+8

Flight Training V

Subject group: Professional Compulsory Subjects – ATP(A) Model curriculum number: 45 Code: MK3FLT4R02HX17-EN ECTS Credit Points: 12 Evaluation: mid-semester grade Year, Semester: 4th year, 1st semester Its prerequisite(s): Flight Training III Further courses are built on it: No Number of teaching hours/week (lecture + practice): 0+12

Topics and Scedule

For the general rules for ATO courses, refer to the effective version of "Training Guidance for Professional Pilot BSc Students". The guidance is available on the university website and the ATO online administrative interface.

DIPLOMA

Within 30 days of the receipt of the certificate on the successful final exam and the language exam in English the diploma is issued and given out by the Faculty at the graduand's special request. Otherwise, the diploma will be awarded to him/her at the graduation ceremony of the Faculty.

Award requirements: Langauge exam in English (level: B2, type: complex) or GCSE exam or a certificate of the same level and type and **ICAO Level 4 language exam**, a good command of Professional English according to Commission Regulation (EU) No. 1178/2011 (03/11/2011) which lays down the conditions on professional pilot training. However, if the language of the program is not Hungarian, no language examination is required for the award of the diploma.

The Professional Pilot Bachelor's degree alone does not entitle its holder to pursue a career as a professional pilot. One of the award requirements is holding a pilot licence. This licence can be gained after having passed the theoretical and practical exam within the accredited examination system of the Aviation Authority of the National Transport Authority.

The diploma is an official document decorated with the coat of arms of Hungary which verifies the successful completion of studies in the Professional Pilot undergraduate program. The diploma contains the following data: name of HEI (higher education institution); institutional identification number; serial number of diploma; name of diploma holder; date and place of his/her birth; level of qualification; training program; specialization; mode of attendance; place, day, month and year issued. Furthermore, it has to contain the original signature of the Dean (or in case of his/her indisposition the Vice-Dean for Education) and the seal of HEI.

If the candidate does not hold the certificate on the successful completion of the language exam in English in the final exam period, the diploma will be issued after the final exam period. In this case instead of the Dean, the Vice-Dean for Education is also allowed to sign the diploma. The University keeps a record of the diplomas issued.

If the candidate has failed to present the certificate on the successful language exam in English, a certificate on the completion of studies will be issued by the Faculty. The document does not contain any reference to qualification, it merely proves that the candidate has taken a successful final exam. The Faculty keeps a record of the certificates issued.

Calculating diploma grade

$$\frac{a+b+c}{3}$$

, where

a = weight grade average, rounded down to two decimal places,

b= average of the grades awarded for the oral part of the final exam, rounded down to two decimal places,

c= grade awarded for thesis defence

Classification of the diploma

Outstanding	4,81 - 5,00
Excellent	4,51 - 4,80
Good	3,51 - 4,50
Satisfactory	2,51 - 3,50
Pass	2,00 - 2,50

Diploma with Honour

A diploma with honours is given where a student received

- a student received an excellent grade in all the subjects of the final exam and for the thesis defence,
- a student received excellent for all the comprehensive exams,
- the grade average of all his/her other examination grades and seminar grades is minimum 4.00 or better, and
- a student did not receive a grade lower than satisfactory during all of his/her studies.

MODEL CURRICULUM OF PROFESSIONAL PILOT BSC

The curriculum of the program is available in excel format on the webpage of the Faculty of Engineering (<u>https://eng.unideb.hu/en</u>).

		University of Debrecen	Faculty of Engineering	ng										C	urri	cului	m											Full-Time
		Professional Pilot BSc			1st seme	ecter	+	2nd	semes	ter	31	rd seme	octor		Ath s	emeste	r	Sth	n seme:	ter		6th se	emester		7th s	semes	tor	
Nr.	Subject groups	Subject	Code	L	<u> </u>		C	L P	-		-		ester E C	сı	4th s	1 1	C	- 1	P E	-	L	P P	TT	с		1	-	Prerequisite
1		Mathematics I	MK3MAT1A08RX17-EN	4	4	m	8																					
2	ces	Mathematics II	MK3MAT2A06RX17-EN	[]	Ц	\square	_	2 4	_	-	Ц	\square		Ļ		ЦĪ	Ţ	Ţ			Ļ		ЦĪ	\square		Ļ	1	Mathematics I
3	Basics of Natural Sciences	Mathematics Comprehensive Exam Statistics and Strength of Materials	MK3MATSA00RX17-EN MK3STSZG06XX17-EN	2	2	m	4	0 0) c	0	\vdash	+	+	+	+	+	+	+	+	+	-	-	$\left \right $	+	_	+	+	Mathematics I, Mathematics II (parallel)
5	tural	Engineering Physics	MK3MFIZA04RX17-EN	2			4	+	+						-			+			-	-				+		
6	of Na	Dynamics and Vibration	MK3MREZG04XX17-EN			_	:	2 2	! e	4																		Engineering Physics, Mathematics I
7	ias ics	Thermodynamics and Fluid Mechanics I	MK3THE1R06HX17-EN	2	2	е	4																					
8	۵	Thermodynamics and Fluid Mechanics II	MK3THE2R04HX17-EN		\square	\dashv	;	2 2	e e	4																		Thermodynamics and Fluid Mechanics I
9 10		Electrotechnics	MK3ELTER06RX17-EN MK3KOZEM04XX17-EN	\vdash	⊢	\rightarrow	+	+			2	2 1	m 6	6		е	2	-	_	-	-			-	+	_		Mathematics I, Engineering Physics
10	P	Economics for Engineers Microeconomics and Economical Processes of Enterprises	MK3KUZEMU4XX17-EN MK3MIKVM04XX17-EN		<u> </u>	+	+	+	+			+		2	2 0	e	-	1	2 e	3	-				+			Economics for Engineers
12	nities	Quality and Technical Management	MK3MINMM04XX17-EN	\square		-	+	+										1	2 e	3	T					+		
13	Economics and Humanities	Environmental Protection and Dangerous Goods	MK3EPDGK04RX17-EN															0	2 m	1 2								
14	E E	Aviation Terminology I	MK3AVT1R01HX17-EN	0	2	m	-	_						_														
15 16		Aviation Terminology II Informatics for Engineers I	MK3AVT2R01HX17-EN MK3INFEA04RX17-EN		2	+	4	0 2	! m	2		_	_	_	-		_	_	_	-	-	-		+	_	-	-	Aviation Terminology I
10		Aircraft Technology	MK3INFEA04RX17-EN	2	2	m		2 2	! e	4		-	-	-	-		-	-	-	+	+	-		+	-	+	-	Engineering Physics, Basics of Aviation I
18		Descriptive Geometry	MK3DEGRR04HX17-EN				+				2	2 1	m 4	4														
19		Mechanical Machines and Machine Elements	MK3MGEPG04RX17-EN			_	t	1			2	2	e 4	4				1		t	L	L		1		t	t	Aircraft Technology
20		Mechatronic Devices (Sensors, Actuators, Motors)	MK3ERZBR04RX17-EN	ЦĪ	Д	1	Ţ	\bot			2	2 1	m 4	4			_	T		T	Γ			Ţ	T	Ţ	Ţ	Engineering Physics
21		Materials Engineering	MK3ANISG06RX17-EN	\vdash	\vdash	\dashv	+	+	+	-	\vdash	+	_	_	_	m	5	+	_	_	-	-	$\left \right $	+	+	+	+	Aircraft Technology
22 23		Technique of Measurement Manufacturing Technologies	MK3TEMER04HX17-EN MK3GYARG04RX17-EN	+	Н	+	+	+	+	-	\vdash	+	+	2	2 2	m	4	2	2 m	1	\vdash	╞	+	+	+	+	+	Electrotechnics Aircraft Technology
25		Environment, Health and Safety, Ergonomics (Basics of EHS)	MK3EHSAK04RX17-EN	\vdash	\vdash	+	+	+	+		\vdash	+	+	+	+	+	+	-	- "		2	2	m	4	+	+	+	
25		Basics of Aviation I	MK3PPL1R02HX17-EN	2	1	m	2	1	1	L			T	Ţ					T	L	L	L		1	╧	Ì		
26		Theoretical Knowledge of Airline Transport Pilot Licence I (ATPL)	MK3TKA1R03HX17-EN	6	0	m	_	\bot	T			1		Ţ		\Box				T		Γ	П	Ţ		Ţ	T	
27	bjects	Basics of Aviation II	MK3PPL2R03HX17-EN	\vdash	\vdash	\rightarrow	_	4 3	-	-	\vdash	+	_	+	_	$\left \right $	_	+	_	-	1	-	$\left \right $	+	_	+	_	Basics of Aviation I
28 29	ional Compulsory Subjects	Theoretical Knowledge of Airline Transport Pilot Licence II (ATPL) Meteorology I (ATPL)	MK3TKA2R02HX17-EN MK3MET1R02HX17-EN	\vdash	\vdash	+	_	1 0 2 2	-	-	\vdash	+	+	+	+	+	+	+	+	+	\vdash	╞	+	+	+	+	+	Theoretical Knowledge of Airline Transport Pilot Licence I (ATPL)
30	osIndi	Communication VFR (ATPL)	MK3WET1R02HX17-EN MK3COMVR01HX20-EN	\vdash	\vdash	+	_	1 0	-	-	\vdash	+	+	+	+	+	+	+	+	+	+	┢		+	+	+	+	
31	Com	Theoretical Knowledge of Airline Transport Pilot Licence III (ATPL)	MK3TKA3R02HX17-EN				1		1		1	1 /	AE 1	1						1	L	L				T	1	Theoretical Knowledge of Airline Transport Pilot Licence II (ATPL)
32		Meteorology II (ATPL)	MK3MET2R02HX17-EN	\square	Д	T	T	\bot	T	Γ		_	AE 3	3	T		Τ	1	T	T	Γ	Ľ	Π	Ţ	T	T	Ţ	Meteorology I (ATPL)
33	Profess	General Navigation (ATPL)	MK3GENAR04HX17-EN	\vdash	\vdash	\dashv	+	+	+	-	3	4 4	AE 4	4		$\left \right $		+	+	-	_	-	\parallel	+	_	+	_	
34 35	۵.	Aircraft General Knowledge I - Airframe, Systems, Power Plants (ATPL) Aircraft General Knowledge - Instrumentation (ATPL)	MK3AGK1R04HX17-EN MK3AGKIR04HX17-EN	\vdash	\vdash	+	+	+	+	-	\vdash	+	+	_	_	m AE	-	+	+	+	+	\vdash	+	+	+	+	+	
36		Radionavigation (ATPL)	MK3RANAR04HX17-EN	\vdash	\vdash	+	+	+	+		\vdash	+	+	_	_	AE	_	+	+	+	┢	┢	+	+	+	+	+	
37		Communication IFR (ATPL)	MK3COMIR01HX20-EN			_	╧		1					_	_	AE	-			t	L	L		Ţ		Ţ	T	
38		Aircraft General Knowledge II - Airframe, Systems, Power Plants (ATPL)	MK3AGK2R04HX17-EN	\square	Д		\bot	\bot									_	_	0 A	_			Щ	Ţ				Aircraft General Knowledge I - Airframe, Systems, Power Plants (ATPL)
39		Air Law (ATPL)	MK3AIRLR04HX17-EN	\vdash	\vdash	\dashv	+	+	_	-	\square	+	_	+	_	$\left \right $	+	3	0 A	2	1				+	-	_	
40 41		Human Performance (ATPL)	MK3HUMPR03HX17-EN MK3FLT1R02HX17-EN	\vdash	⊢┤	+	+	┿	+	+	0	6 1	m 4	4	+	+	+	+	+	+	3	0	AE	2	+	+	+	Internshin I
41		Flight Training I Flight Training II	MK3FLT1R02HX17-EN MK3FLT2R02HX17-EN	\vdash	H	+	+	+	+		U		4	_) 5	m	7	+	+	+	+	┢	+	+	+	+	+	Internship I Internship I Internship I Internship I
43		Flight Training III	MK3FLT3R02HX17-EN	\square		\uparrow	+	+	1		H	_		Ť			-	0	8 m	1 6		ŀ		\uparrow	_	T	+	Internship II
44		Flight Training IV	MK3FLT4R02HX17-EN			二	T	T													0	8	m	6		T		Internship II
45		Flight Training V	MK3FLT5R02HX17-EN	\square	ĻЦ	$ \rightarrow$	4	\downarrow			Ц					\downarrow							\square		0 1	2 m	n 12	Flight Training III
46 47	scific trs	Flight Planning and Monitoring (ATPL) Mass and Balance (ATPL)	MK3FLPMR03HX17-EN MK3MASSR03HX17-EN	$\left \right $	\vdash	+	+	+	+	-	\vdash	+	+	+	_	+	+	4	2 AI	E 3	2	2	AE	,	+	+	+	
47	Field-s pecific Vocational Subjects	Performance (ATPL)	MK3PERFR04HX17-EN	+		+	-	-				-	_	_	-			-		-	3	3		2	-	-		
49	e v	Operational Procedures (ATPL)	MK3OPPRR02HX17-EN			-	+	+										+			_	2		2				
50	Moduls	APS MCC and JOC		\square			T	Ť																:	2 3	m	n 5	Flight Training IV
51	Moc	Type Rating Course																						:	2 3	m	n 5	Flight Training IV, Internship III
52	Thesis	Thesis I	MK3THE1R05HX17-EN		[[0	4	m	5				Aircraft General Knowledge I - Airframe, Systems, Power Plants (ATPL), Mechatronic Devices (Sensors, Actuators, Motors)
53	Ч́т	Thesis II	MK3THE2R10HX17-EN			+	\pm		1	L	H		\pm						\pm	1	L				0 8	l m	n 10	Thesis I
54	ts*	Optional Subject I		\square	Ē	T	T	\square	T				2	2	T		Τ	Τ		T	Γ	Γ		T	T	Ţ	T	
55	Optional Subjects*	Optional Subject II	<u> </u>	\square	\square	\dashv	\downarrow	+	+		\square	\downarrow			+	+	2	+			$\left \right $	Ļ	\square	ļ	+	+	\downarrow	
56 57	onals	Optional Subject III Optional Subject IV		\vdash	\vdash	+	+	+	+		\vdash	+	+	+	+	+	+	+	+	2	+	-	$\left \right $,	+	+	+	
57	Opti	Optional Subject IV Optional Subject V		┢─┤	⊢┤	+	+	+	+	-	\vdash	+	+	+	+	+	+	+	+	+	+	┢	+	-	+	+	2	
59		Internship I	MK3INT1R02HX17-EN	\square	\square	+	- 5	8 week	s m	3	H	+	+	╈	\top	\square	1	+	+	1	T	t	$ \uparrow $	╈	\uparrow	T	Ť	Prerequisite: Basics of Aviation I
	dida		+	\vdash	\vdash	+	+				\vdash	+	+	+		+	+	+	+	+	+	\vdash	+	+	+	+	+	Paralell: Basics of Aviation II Prerequisite: Flight Training I
60	Internship	Internship II	MK3INT2R03HX17-EN	\square	Щ	\dashv	\downarrow	\perp			\square			8	weeks	5 m	4	\downarrow		_	1		\square				_	Paralell: Flight Training II
61	-	Internship III	MK3INT3R05HX17-EN																		8 w	veeks	m	3				Prerequisite: Flight Training III Paralell: Flight Training IV
				L	Р	E	-	L P	_	С	L	Ρ	E C	сı	LP	Ε	С	L	ΡE	C	L	Р	Ε	с	L P	E		
			Total / semester	: 20			31 1	16 17	-	-	14	22		12 18	8 16	-	30	16		28	11	21		29	2 23	_	29	
<u> </u>		number	number of exam subject: of mid-semester grade subject:			2	+	+	3		\vdash		1	+	+	1	+	+	2	_	+	╞	0	+	+	0	_	number of exam subjects 9 number of mid-semester grade subjects 33
			f comprehensive exam subject:	s		0	+	+	1	-	\vdash		0	╈	+	0	+	+	0	_	┢	┢	0	+	+	0	_	number of comprehensive exam subjects 1
		num	ber of Authority Exam subject:	ŝ	口	0	T	\bot	1				3	Ţ		3		1	3	_			4	1		0	_	number of Official Exam subjects 1
			number of subject:	5	\vdash	8	4		11	·			8	\downarrow	+	9		-	8		1	\vdash	8	1		3		number of subjects 55
<u> </u>		numbe	er of teaching hours / semester	er 35	⊢┥	┿	3	33	+	+	36	+		34	4	+		34		+	32	-	+	2	25	+	+	number of teaching hours 22 number of optional credits 10
		Abbreviations:		Criteri	ion sub	ojects:			1																	٦	+	total number of credits 21
		L = Number of Lectures / week		-	onal Sub	· ·		and R	egulat	ions XI	II. Facı	ulty of I	Engine	eering	; 10. §	(2)). Mi	nimum	n of cre	edits a:	signe	d to op	otiona	al subjec	ts: 10	credit	s.		
		P = Number of Practices / week			uggedte																							
		E = Evaluation			nship I (_	
		c = comprehensive exam	Internship II (lenght: 8 weeks after the 4th semester; students must register for the subject in the 4th semester) Internship III (lenght: 8 weeks after the 6th semester; students must register for the subject in the 6th semester)													-												
		e = exam	1	Work and Fire Safety (requirement: signature, students must register for the subject in the 1st semester based																	_							
		m = mid-semester grade		Work :	and Fire	e Safet	'y (ren	uirem	ent: sig	znatur	e, stur	lents m	nust rea	gister	r for th	e subier	t in th	ne 1st i	semest	er bas	ied on	Rules	and Re	gulativ	ons XII	ι.		
					and Fire ty of Eng				ent: się	gnatur	e, stud	lents m	nust reg	gister	for th	e subjec	ct in th	ne 1st :	semest	er bas	ed on	Rules	and Re	gulatio	ons XII	l		