University of Debrecen Faculty of Engineering

Engineering Management MSc Program

2022

TABLE OF CONTENTS

DEAN'S WELCOME4
HISTORY OF THE UNIVERSITY
ADMINISTRATION UNITS FOR INTERNATIONAL PROGRAMMES7
DEPARTMENTS OF FACULTY OF ENGINEERING10
ACADEMIC CALENDAR
THE ENGINEERING MANAGEMENT MASTER'S PROGRAM26
Information about the Program
Completion of the academic program 29
The Credit System
Guideline (Lisf of Subjects/Semesters)
Work and Fire Safety Course
Physical Education
Optional Courses
Pre-degree Certification
Thesis
Final exam
COURSE DESCRIPTIONS FOR ENGINEERING MANAGEMENT MSC
Subject group "Science Knowledge" (for all 3 specializations)
Subject group "Economics and Humanities" (for all 3 specializations) 51
Subject group "Field-Specific Subjects" (for all 3 specializations)
Subject group "Differentiated Field-Specific Subjects" for Construction Industry specialization
Subject group "Differentiated Field-Specific Subjects" for Industrial Process Engineering specialization
Subject group "Differentiated Field-Specific Subjects" for Material Handling and Logistics specialization
MODEL CURRICULUM OF ENGINEERING MANAGEMENT MSC, Construction Industry Specialization

MODEL	CURRICULUM	OF	ENGINEERING	MANAGEMENT	MSC,	Industrial
Process Engineering Specialization						
		~-				
MODEL	CURRICULUM	OF	ENGINEERING	MANAGEMENT	MSC,	Material
Handling and Logistics Specialization						

DEAN'S WELCOME

Welcome to UD's Faculty of Engineering!

The Faculty of Engineering of the University of Debrecen has become an outstanding centre of education and research in the Eastern Hungarian region. Following the footsteps of our predecessors, the academic and administrative staff of the Faculty work hand in hand to make our training programmes and researches meet both national and international standards.

The Faculty of Engineering is one of Hungary's most significant institutions of highereducation, and its 3000 students make it a dominant faculty of the University of Debrecen which - having the most international students, offering the most academic programmes among Hungarian universities and having been classified as a research university, the highest of qualifications - is officially listed among the best universities in the country.

We welcome the most outstanding and inquisitive students of the region with an enthusiastic and professional team of academics and researchers, and a set of laboratories unique in the country. We consciously aspire to develop the quality of education and research further, based on a close cooperation between the Faculty and the industry. Our students enter many prestigious competitions and they are becoming increasingly successful and acclaimed, while our instructors are working on a growing number of national and international projects of basic and applied research.

The Faculty bridges the gap between theory and practice and provides a high-quality theoretical background merged into practice-oriented training based on industrial relations. We do our best to maintain the high prestige of the engineering diplomas awarded by the University of Debrecen and to make sure that the knowledge and achievements of students who graduate from our Faculty continue to be recognised in the labour market.

All things considered, you are kindly advised to read this bulletin which hopefully reflects our endeavours appropriately and provides all the information you need to know about your chosen training programme. We are looking forward to supporting the personal and professional growth of our future engineers.

With the best of wishes for the years to come,

Géza Husi Dean

HISTORY OF THE UNIVERSITY

The history of Debrecen's higher education dates back to the 16th century. The Calvinist Reformed College, established in 1538, played a central role in education, teaching in the native language and spreading Hungarian culture in the region as well as in the whole country. The College was a sound base for the Hungarian Royal University, founded in 1912. Apart from the three academic faculties (arts, law, theology) a new faculty, the Faculty of Medicine was established, and the University soon became one of the regional citadels of Hungarian higher education. Today, University of Debrecen is classified as "University of National Excellence" and offers the highest number of academic programs in the country, therefore it is considered to be one of the best universities in Hungary. Its reputation is the result of its quality training, research activities and the numerous training programs in different fields of science and engineering in English. With 14 faculties and a student body of almost 30.000, out of which about 3700 are international students, the University of Debrecen is one of the largest higher education institutions in Hungary.

The history of the Faculty of Engineering dates back to 1965, when the Technical College was established. In 1972 it was renamed Ybl Miklós Polytechnic and in 1995 it became part of Kossuth Lajos University. In 2000 the Faculty of Engineering became part of the integrated University of Debrecen.

In 2005 the Bologna System was introduced which supports the competitiveness of qualifications received at the University of Debrecen against universities all over Europe.

The Faculty of Engineering is practice-oriented and develops skills required for the current needs of the national and international labour market. The teaching staff is involved in numerous domestic and international research and design projects. The recently-opened new building wing with its ultra-modern design hosts several lecture halls, seminar rooms and laboratories equipped with the latest technology. Our students are provided with practical knowledge, training and field practice from numerous prestigious domestic and multi-national industry partners. The internship periods are excellent opportunities for students to experience how theory is put into practice at the most renowned industry representatives and become more successful in the labour market of this highly competitive sector. Students learn how to work in the working environment of multi-national companies and adapt to challenges easily. After graduation they will be able to work at a strategic decision-making level, giving priority to efficiency and engineering ethics.

The Faculty of Engineering offers a great variety of BSc, MSc courses and post-graduate training courses tailored to the needs of the rapidly changing world of engineering and focusing on European and international trends. In 2011 the Faculty of Engineering launched engineering trainings in English. In order to optimize the quality of training, the Faculty continuously strives to expand the number of industrial and educational partners at home and abroad.

The Faculty of Engineering has been a pioneer in the introduction of Quality Management System at faculty level to measure and evaluate the efficiency of its education and teaching staff in order to improve the quality of education and training from the feedback received.

The Faculty of Engineering has a vivid student life. There is a film club waiting for movie buffs and the door of the Faculty library is always open. The library is not only the host to the latest technical books, exhibitions and tea afternoons with invited speakers, but students can also purchase theatre and concert tickets from the librarians. The Borsos József Dormitory is also a hub of activities for students.

The increasing number of international students brings cultural and ethnic diversity to the faculty.

Our aim is to aid students to become efficient members of the labour market and enrich the world of engineering in Hungary and abroad with their knowledge and expertise.

ADMINISTRATION UNITS FOR INTERNATIONAL PROGRAMMES

COORDINATING CENTER FOR INTERNATIONAL EDUCATION

98, Nagyerdei körút, Debrecen 4032 Telephone: +36-52-512-900/62796 E-mail: <u>info@edu.unideb.hu</u>

Program Director (Non-Medical Programmes)	László Kozma
Admission Officer (for fee paying students)	Ms. Ibolya Kun
	Ms. Kornélia Szabó-Kulcsái
Admission Officer (for scholarship students)	Ms. Lilla Almási-Fónai
	Ms. Annamária Rácz
Administrative Assistant	Ádám Losonczi
(for fee paying students)	Norbert Balogh
Administrative Assistant	Ms. Nóra Dede
(for scholarship students)	

The Coordinating Centre for International Education supports the international degree programmes of the University of Debrecen in giving new students information on admission and entrance exam. It has tasks in promoting and is in charge of tasks like enrolment, study contracts, modifying student status or degree programme, activating student status, modifying students' personal data, requesting and updating student cards, providing certificates for the Immigration Office (for residence permit), issuing student status letters and certificates on credit recognition, concluding health insurance contract and providing Health Insurance Card, helping students with visa process application.

INTERNATIONAL OFFICE AT THE FACULTY OF ENGINEERING

2-4, Ótemető utca, Debrecen H-4028 Telephone: +36-52-415-155/78709

Head of International Office	Zsolt Tiba PhD habil.
room 122	<u>tiba@eng.unideb.hu</u>
International Relations Officer	Márton Lévai
room 123	levai.marton@eng.unideb.hu
International Relations Officer	Ms. Zita Popovicsné Szilágyi
room 124	szilagyizita@eng.unideb.hu
International Relations Officer	Ms. Tímea Török
room 123	torok.timea@eng.unideb.hu

The International Office has been functioning since 2014 in order to ensure the smooth running of the international degree courses. The office is responsible for student administration (full-time students, full-time transfer students, visiting/Erasmus students), providing certificates for students, considering and accepting requests, solving problems related to course registration, giving information about internship, final exam, thesis, etc.

DEAN'S OFFICE

Faculty of Engineering 2-4, Ótemető utca, Debrecen H-4028

Dean:	Géza Husi PhD, habil., Associate Professor
room 109	husigeza@eng.unideb.hu
Vice-Dean for Educational Affairs:	Ms. Judit T. Kiss PhD, Associate Professor
room 120	tkiss@eng.unideb.hu
Vice-Dean for Scientific Affairs:	Imre Kocsis PhD habil., Full Professor
room 120	kocsisi@eng.unideb.hu
Head of Directory Office:	Ms. Noémi Siposné Bíró JD
room 109	<u>bironoemi@unideb.hu</u>

9

DEPARTMENTS OF FACULTY OF ENGINEERING

Department of Air- and Road Vehicles Department of Architecture Department of Basic Technical Studies Department of Building Services and Building Engineering Department of Civil Engineering Department of Engineering Management and Enterprise Department of Environmental Engineering Department of Mechanical Engineering Department of Mechatronics Off-Site Department of Aviation Engineering

DEPARTMENT OF AIR- AND ROAD VEHICLES

2-4 Ótemető utca, Debrecen, H-4028, room 120, Tel: +36-52-512-900 / 77742

.

name, position	e-mail, room number
Géza Husi PhD, habil., Associate Professor, Head of Department	<u>husigeza@eng.unideb.hu</u> room 109
Ms. Piroska Gyöngyi Ailer PhD, College Professor, Vice Rector	ailer.piroska@unideb.hu room 121
Zsolt Tiba PhD habil., College Professor	<u>tiba@eng.unideb.hu</u> room 303
József Menyhárt PhD, Associate Professor	jozsef.menyhart@eng.unideb.hu room 324/6
Zsolt Békési, Assistant Lecturer	<u>zsolt.bekesi@eng.unideb.hu</u> room 324/6
Timotei István Erdei, Assistant Lecturer, PhD student	timoteierdei@eng.unideb.hu Building B, Robotics Laboratory
József Kertész, Teacher of Engineering	<u>kertesz.jozsef@eng.unideb.hu</u> room 301
Ms. Krisztina Tóth JD, Administrative Assistant	toth.krisztina@eng.unideb.hu room 120

DEPARTMENT OF ARCHITECTURE

2-4, Ótemető utca, Debrecen, H-4028, room 409, Tel: +36-52-512-900 / 78704

name, position	e-mail, room number
Tamás Szentirmai DLA, Associate Professor, Head of Department	<u>szentirmai.tamas@gmail.com</u> room 409
Antal Puhl DLA, habil. Professor Emeritus	puhl@puhlarchitect.hu room 409
Péter Kovács DLA, Associate Professor	<u>kovacs.pe@chello.hu</u> room 409
Gábor Zombor DLA, Associate College Professor	<u>zombor@monomorph.hu</u> room 409
Miklós János Boros DLA, Senior Lecturer	boros.miklos.janos@gmail.com room 409
Ms. Edit Huszthy DLA, Senior Lecturer	<u>huszthyedit@gmail.com</u> room 409
Ms. Dóra Eszter Molnár, Senior Lecturer	<u>molnar.dora.e@gmail.com</u> room 409
Péter Müllner, Senior Lecturer	mullner.peter@eng.unideb.hu room 409
Zoltán Major, Senior Lecturer	<u>m.zoltan@eng.unideb.hu</u> room 409
Zsolt Erdőhegyi, Master Instructor	erdohegyi@gmail.com room 409

Ms. Réka Aradi, Master Instructor	reka0416@gmail.com
	room 409
Ferenc Keller, Master Instructor	kellerfeco@gmail.com
	room 409
Dénes Nagy, Departmental Engineer	<u>nagy.denes@eng.unideb.hu</u> room 409
Ms. Anita Tóth-Szél, Administrative Assistant	<u>szelanita@eng.unideb.hu</u> room 409

DEPARTMENT OF BASIC TECHNICAL STUDIES

2-4 Ótemető utca, Debrecen, H-4028, ground floor 6, Tel: +36-52-512-900 / 77735

name, position	e-mail address, room number
Imre Kocsis PhD habil., Full Professor, Head of Department	<u>kocsisi@eng.unideb.hu</u> ground floor 2
Gusztáv Áron Szíki PhD, College Professor	<u>szikig@eng.unideb.hu</u> ground floor 7
Balázs Kulcsár PhD, Associate Professor	<u>kulcsarb@eng.unideb.hu</u> ground floor 4
Ms. Rita Nagyné Kondor PhD habil, Associate Professor	<u>rita@eng.unideb.hu</u> ground floor 7
Csaba Gábor Kézi PhD, Associate College Professor	<u>kezicsaba@science.unideb.hu</u> ground floor 6
Ms. Adrienn Varga PhD, Associate College Professor	vargaa@eng.unideb.hu ground floor 5

Ms. Gyöngyi Bodzásné Szanyi PhD, Senior	szanyi.gyongyi@science.unideb.hu
Lecturer	ground floor 6
Ms. Ildikó Papp PhD, Senior Lecturer	papp.ildiko@inf.unideb.hu ground floor 3/B.
Ms. Éva Csernusné Ádámkó, Assistant	adamko.eva@eng.unideb.hu
Lecturer	ground floor 7
Ms. Erika Perge PhD, Senior Lecturer	perge@eng.unideb.hu ground floor 6
Attila Vámosi, Master Lecturer	<u>vamosi.attila@eng.unideb.hu</u> ground floor 5
Ms. Dóra Sipos, Administrative Assistant,	dorasipos@eng.unideb.hu
Lecturer	ground floor 3/B

DEPARTMENT OF BUILDING SERVICES AND BUILDING ENGINEERING

Ótemető utca 2-4., Debrecen, H-4028, room 121, Tel: +36-52-512-900 / 77770

name, position	e-mail, room number
Imre Csáky PhD, Associate Professor, Head of Department	<u>imrecsaky@eng.unideb.hu</u> room 302/c
Ferenc Kalmár PhD, habil, DSc, Full	fkalmar@eng.unideb.hu
Professor	room 121/324.7
Ákos Lakatos PhD, habil, Associate	<u>alakatos@eng.unideb.hu</u>
Professor, Deputy Head of Department	room 302/a
Ms. Tünde Klára Kalmár PhD, Associate	<u>kalmar_tk@eng.unideb.hu</u>
Professor	room 324/5

Zoltán Verbai PhD, Senior Lecturer	verbai@eng.unideb.hu room 324/4
Ferenc Szodrai PhD, Associate Professor	<u>szodrai@eng.unideb.hu</u> room 324/8
Béla Bodó, Master Instructor	<u>bela.bodo@eng.unideb.hu</u> room 324/4
Sándor Hámori, Master Instructor	<u>sandor.hamori@eng.unideb.hu</u> room 324/8
Gábor L. Szabó, Assistant Lecturer	l.szabo.gabor@eng.unideb.hu room 324/2
Attila Kostyák, Department Engineer	<u>kostyak.attila@eng.unideb.hu</u> room 324/3
Szabolcs Szekeres, Department Engineer	<u>szekeres@eng.unideb.hu</u> room 324/2
András Zöld PhD, Professor Emeritus	profzold@yahoo.fr room 324/3
Ms. Lola Szodrai-Csibi, Administrative Assistant	<u>lola@eng.unideb.hu</u> room 302

DEPARTMENT OF CIVIL ENGINEERING

2-4 Ótemető utca, Debrecen, H-4028, room 209, Tel: +36-52-512-900 / 78701

name, position	e-mail, room number
Imre Kovács PhD, College Professor, Head of Department	dr.kovacs.imre@eng.unideb.hu room 212/e
József Garai PhD habil., Professor	<u>garai.jozsef@eng.unideb.hu</u> room 212/c

György Csomós PhD, College Professor	<u>csomos@eng.unideb.hu</u> room 209/d
János Major PhD habil., College Professor	<u>drmajorjanos@eng.unideb.hu</u> room 212/c
Ms. Kinga Nehme PhD, Associate Professor	<u>knehme@eng.unideb.hu</u> room 209/a
Ms. Herta Czédli PhD, Associate Professor	<u>herta.czedli@eng.unideb.hu</u> room 209/e
Ms. Gabriella Hancz PhD, Associate Professor	<u>hgabi@eng.unideb.hu</u> room 209/a
Ms. Éva Lovra PhD, Senior Lecturer	<u>lovra.eva@eng.unideb.hu</u> room 209/b
Zoltán Bereczki PhD, Senior Lecturer	<u>bereczki.zoltan@eng.unideb.hu</u> room 209/b
László Radnay PhD, Associate College Professor	<u>laszlo.radnay@eng.unideb.hu</u> room 209/c
Zsolt Varga PhD, Associate College Professor	vzs@eng.unideb.hu room 119, Lab
Ms. Krisztina Kozmáné Szirtesi, Assistant Lecturer	<u>kszk@eng.unideb.hu</u> room 212/b
Ms. Beáta Pataki, Assistant Lecturer	<u>pataki.bea@eng.unideb.hu</u> 209/e
Ádám Ungvárai, Assistant Lecturer	<u>ungvarai@eng.unideb.hu</u> room 212/a
János Bíró, Master Instructor	<u>biroj@eng.unideb.hu</u> room 119, Lab

Zsolt Martonosi, Master Instructor	<u>martonosizs@eng.unideb.hu</u> room 212/b
László Tarcsai, Master Instructor	<u>tarcsai@eng.unideb.hu</u> room 212/a
József Kovács, Departmental Engineer	j.kovacs@eng.unideb.hu room 209/b
Zsolt Vadai, Master Instructor	<u>vadai@eng.unideb.hu</u> room 209/e
Titusz Igaz, Lecturer	<u>igaz.titusz@gmail.com</u> room 212/b
Péter Lugosi, Departmental Engineer	<u>lugosi.peter@eng.unideb.hu</u> room 209/e
Ms., Mónika Tóthné Csákó, Administrative Assistant	<u>csmoni@eng.unideb.hu</u> room 212

DEPARTMENT OF ENGINEERING MANAGEMENT AND ENTERPRISE

2-4 Ótemető utca, Debrecen, H-4028, room 206, Tel: +36-52-512-900 / 77766

name, position	e-mail, room number
Ms. Judit T. Kiss PhD, Associate Professor, Head of Department	<u>tkiss@eng.unideb.hu</u> room 120
Ms. Edit Szűcs PhD habil, Full Professor	<u>edit@eng.unideb.hu</u> room 206
Géza Lámer PhD, College Professor	<u>glamer@eng.unideb.hu</u> room 202/b
István Budai PhD, Associate Professor	<u>budai.istvan@eng.unideb.hu</u> room 414

Ms. Andrea Emese Matkó PhD habil, Associate Professor room 202/d Domicián Máté PhD habil, Associate Professor room 202/d László Török PhD, Senior Lecturer room 202/a Ms. Éva Diószeginé Zentay, Master Instructor room 202/c Attila Halczman, Master Instructor room 202/e Ms. Tünde Jenei PhD, Master Instructor room 202/b Ms. Anita Mikó-Kis JD, Master Instructor room 202/a

Csanád Sipos, Master Instructor

andim@eng.unideb.hu

mate.domician@eng.unideb.hu

dr.torok.laszlo@eng.unideb.hu

zentayevi@eng.unideb.hu

haat@eng.unideb.hu

jeneit@eng.unideb.hu

drkisanita@eng.unideb.hu

sipos.csanad@eng.unideb.hu room 202/f

Emil Varga, Master Instructor	<u>emil@eng.unideb.hu</u> room 202/g
Balázs Kocsi PhD, Assistant Lecturer	<u>kocsi.balazs@eng.unideb.hu</u> room 414
Róbert Sztányi, Assistant Lecturer	<u>sztanyir@eng.unideb.hu</u> room 202/g
Miklós Fazekas, Lecturer	miklos.fazekas.87@gmail.com room 206
Gyula Mikula, Lecturer	<u>mikula.gyula@gmail.com</u> room 202/f
Ms. Judit Bak Administrative Assistant	<u>bakjudit@eng.unideb.hu</u> room 204

DEPARTMENT OF ENVIRONMENTAL ENGINEERING

2-4 Ótemető utca, Debrecen, H-4028, room 312, Tel: +36-52-512-900 / 77827

name, position	e-mail, room number
Dénes Kocsis PhD, Associate Professor, Head of Department	<u>kocsis.denes@eng.unideb.hu</u> room 312
Ms. Ildikó Bodnár PhD, College Professor	<u>bodnari@eng.unideb.hu</u> room 309
Ms. Andrea Keczánné Üveges PhD, Associate Professor	auveges@eng.unideb.hu room 313
János Szendrei PhD, Associate Professor	szendrei.janos@eng.unideb.hu room 313

<u>forian@eng.unideb.hu</u> room 313
<u>beller.gabor@eng.unideb.hu</u> room 310
szabolcsikandi@eng.unideb.hu room 310
truzsi.alexandra@eng.unideb.hu room 310
lgulyas@eng.unideb.hu room 310
<u>halaszneandi@eng.unideb.hu</u> room 312

DEPARTMENT OF MECHANICAL ENGINEERING

2-4 Ótemető utca, Debrecen, H-4028, room 304, Tel: +36-52-512-900 / 77776

name, position	e-mail, room number
Tamás Mankovits PhD, Associate Professor,	<u>tamas.mankovits@eng.unideb.hu</u>
Head of Department	room 304
Sándor Bodzás PhD, Associate Professor,	<u>bodzassandor@eng.unideb.hu</u>
Deputy Head of Department	room 308
Sándor Hajdu PhD, Associate Professor,	<u>hajdusandor@eng.unideb.hu</u>
Deputy Head of Department	room 307
Levente Czégé PhD, Associate Professor	<u>czege.levente@eng.unideb.hu</u> room 307
György Juhász PhD, Associate Professor	juhasz@eng.unideb.hu room 306

László Molnár PhD, Associate Professor	molnar.laszlo@eng.unideb.hu room 301
Sándor Pálinkás PhD, Associate College Professor	<u>palinkassandor@eng.unideb.hu</u> room 308
István Árpád PhD, Senior Lecturer	arpad.istvan@eng.unideb.hu room 306
Ms Szilvia Barkóczyné Gyöngyösi PhD, Senior Lecturer	szilvia.gyongyosi@eng.unideb.hu room 308
Krisztián Deák PhD, Senior Lecturer	<u>deak.krisztian@eng.unideb.hu</u> room 305
Czomba Sándor PhD, Senior Lecturer	<u>sandor.czomba@eng.unideb.hu</u> room 307
Dávid Huri, Assistant Lecturer	<u>huri.david@eng.unideb.hu</u> room 324/6
Gábor Balogh, Master Instructor	<u>balogh.gabor@eng.unideb.hu</u> room 305
Tibor Pálfi, Master Instructor	tibor.palfi@eng.unideb room 301
Sándor Andráskó, Master Instructor	<u>sandor.andrasko@eng.unideb.hu</u> room U.0.16
Márton Lévai, Engineer Instructor	<u>levai@eng.unideb.hu</u> room U.0.16
Dániel Nemes, Department Engineer, PhD Student	<u>nemes.daniel@eng.unideb.hu</u> room U.0.22
András Gábora, Department Engineer	andrasgabora@eng.unideb.hu room U.0.16

Zoltán Gergő Géresi, Department Engineer	zoltan.geresi@eng.unideb.hu
Máté File, Assistant	room U.0.16 mate.file@eng.unideb.hu
	room 320
Ms. Lilla Csonkáné Dóró, Administrative Assistant	lilla.csonkane@eng.unideb.hu room 304
Ms. Szandra Sitku, Administrative Assistant	<u>szandra.sitku@eng.unideb.hu</u> room 304

DEPARTMENT OF MECHATRONICS

2-4 Ótemető utca, Debrecen, H-4028, room 120, Tel: +36-52-512-900 / 77742

name, position	e-mail, room number
Péter Tamás Szemes PhD, Associate Professor; Head of Department	<u>szemespeter@eng.unideb.hu</u> Building B, room I/6
Kornél Sarvajcz, Assistant Lecturer, PhD student	<u>sarvajcz@eng.unideb.hu</u> Building B, room I/1
Prof. Dr. Péter Korondi, Full Professor	<u>korondi.peter@eng.unideb.hu</u> Building B, room 6
István Balajti PhD, Associate Professor	<u>balajti.istvan@eng.unideb.hu</u> Building B, room 5
Miklós Pamper, Master Instructor	pampermiklos@eng.unideb.hu Building B, room I/5
Husam Abdulkareem Neamah Almusawi, PhD , Senior Lecturer	<u>husam@eng.unideb.hu</u> Building B, room I/5
Gyula Attila Darai, Departmental Engineer	<u>darai@eng.unideb.hu</u> Building B, room 7
Gyula Korsoveczki, Assistant Lecturer, PhD student	korsoveczki.gyula@eng.unideb.hu Building B, Robotics Laboratory

Róbert Mikuska, Departmental Engineer, PhD student	<u>mikuska.robert@eng.unideb.hu</u> Building B, I/4
Szabolcs Diós, Departmental Engineer	dios.szabolcs@eng.unideb.hu Building B, room I/5
Ms. Alaa Saadah, PhD student, Lecturer	<u>alaa.saadah@eng.unideb.hu</u> Building B, room I/3
Zenan Guo, PhD student, Lecturer	guozenan@eng.unideb.hu Building B, room I/6
Aminu Babangida, PhD student, Lecturer	aminu.babangida@inf.unideb.hu Building B, room I/6
Ms. Nóra Tóth, Administrative Assistant	<u>tothnora@eng.unideb.hu</u> Building A, room 120

DEPARTMENT OF AVIATION ENGINEERING

1 Szatke Ferenc utca, Debrecen, H-4030, Tel: +36-52-870-270, <u>www.pharmaflight.hu</u>

name, position	e-mail, room number
Ms. Enikő Földi JD, Chief Executive Director	training@pharmaflight.hu
Gyula Győri, Honorary Associate Professor, Head of Department	<u>training@pharmaflight.hu</u>
Ms.Krisztina Szabó MD, Head of Aeromedical Department	aeromedical@pharmaflight.hu

ACADEMIC CALENDAR

General structure of the academic year:

	1 st week	Registration*	1 week
	$2^{nd} - 7^{th}$ week	Teaching Block 1	6 weeks
Study period	8 th week	1 st Drawing Week	1 week
	$9^{th} - 14^{th}$ week	Teaching Block 2	6 weeks
15 th week	2 nd Drawing Week	1 week	
Exam period	directly after the study period	Exams	7 weeks

*Usually, registration is scheduled for the first week of September in the fall semester, and for the first week of February in the spring semester.

ACADEMIC CALENDAR OF THE FACULTY OF ENGINEERING 2022/2023

Opening ceremony of the academic year	4 September 2022 (Sunday)
Registration week	29 August – 2 September 2022
Revision week (exams in Exam courses may be scheduled during this week)	29 August – 2 September 2022
1 st semester study period in MSc and BSc programs	5 September - 9 December 2022 (14 weeks) In case of finalist courses: 5 September 2022 - 4 November 2022 (9 weeks)
Reporting period I (Drawing week I)	17 - 21 October 2022 (4 working days without scheduled lessons, consultation schedule announced previously)
Conferences, Career Days	26-28 October 2022
Career Days in Mechanical Engineering (Exhibition and ISCAME – International Scientific Conference on Advance in Mechanical Engineering) – organised by the Department of Mechanical Engineering	10 – 11 November 2022
Faculty Conference of Scientific Students' Association	25 November 2022

Reporting period II (Drawing week II)	5-9 December 2022
	(5 working days without scheduled lessons, consultation schedule announced previously)
1 st semester examination period	12 December 2022 - 27 January 2023 (7 weeks) In case of finalist courses: 7 November - 9 December 2022 (5 weeks)
Thesis (BSc, MSc) submission deadline	As defined by the departments; max. 14 days of the beginning of the final examination period.
Final examination period	As defined by the departments; at least one occasion between 12 December 2022 and 27 January 2023.
Registration week	30 January - 3 February 2023
2 nd semester study period in MSc and BSc programs	6 February - 12 May 2023 (14 weeks) In case of finalist courses: 6 February - 7 April 2023 (9 weeks)
Reporting period I (Drawing week I)	20 - 24 March 2023 (5 working days without scheduled lessons, consultation schedule announced previously)
Career Days – "Industry Days in Debrecen 2023" (working days without teaching for Mechanical Eng. BSc, Mechanical Eng. MSc, Environmental Eng. MSc, Mechatronics Eng. BSc, Mechatronical Eng. MSc, Civil Eng. BSc students)	29 March – 31 March 2023
Career Days and Exhibition in Building Services Engineering (organised by the Department of Building Services and Building Engineering)	4 – 5 May 2023
Reporting period II (Drawing week II)	8 – 12 May 2023 (5 working days without scheduled lessons, consultation schedule announced previously).
2 nd semester examination period	15 May – 30 June 2023 (7 weeks)

	In case of finalist courses: 10 April - 12 May 2023 (5 weeks)
Thesis (BSc, MSc) submission deadline	As defined by the departments; max. 14 days of the beginning of the final examination period.
Final examination period	As defined by the departments; at least one occasion between 15 May and 16 June 2023. The departments shall announce the date of the final examination until 14 February 2023.

THE ENGINEERING MANAGEMENT MASTER'S PROGRAM

INFORMATION ABOUT THE PROGRAM

Name of master's program:	Engineering Management Master's Program
Specializations available:	Industrial Process Engineering Specialization
	Material Handling and Logistics
	Construction Industry Specialization
Field, branch:	Engineering; Engineering management
Level:	MSc (master)
Qualification:	Engineering Manager
Mode of attendance:	Full-time
Faculty:	Faculty of Engineering
Program coordinator:	Dr Edit Szűcs, Professor
Program length:	4 semesters
Credits total:	120 (Thesis: 30, Optional subjects: 6)

Professional competencies to be acquired

An engineering manager

Knowledge:

- understands the general and specific principles, rules, relations and procedures pertaining to natural sciences, engineering sciences, agricultural science, organisational science necessary to work in the field of engineering.
- knows the functional operation, requirements of engineering devices, production systems.
- knows the conditions, methods of creating and improving economical maintenance.
- knows the operational principles of organisations as purposeful systems.
- knows the engineering-, agriculture- and management-related activities and their relations.
- knows the theory and methodology necessary to found production and service organisations and to control and improve their operation.

- knows the engineering, economic and legal regulations relating to quality management, environmental protection, consumer protection, product responsibility, health and safety at work.
- possesses the widely-used problem-solving techniques necessary for research and scientific work.
- knows the main quantitative analytical methods and the basics of operation research, programming in mathematics, probability theory and statistics in mathematics.

Abilities:

- is capable of the practical application of the acquired knowledge and using problem-solving techniques.
- is able to review production and service processes from engineering, economic, human and other social perspectives and communicate with representatives from different professional fields.
- is able to prepare and realise business plans, complete pre-decision-making tasks and make decisions, work out and implement innovation strategies.
- is capable of the application of integrated knowledge from the following areas: engineering devices, technological processes, materials and technologies, electronics, informatics.
- is able to complete the tasks of engineering value analysis, quality assurance of production systems and technologies, improve the quality and efficiency indicators of economy.
- is able to harmonize the design and implementation of innovation processes.
- is able to harmonize tasks which need multidisciplinary engineering skills and control their realisation.
- is creative, flexible, has good communication, argumentative, cooperative and problem-solving skills.
- is able to apply statistical and econometric devices to deepen research activity.

Attitude:

- is open and sensitive to professional and technological development and innovation and their proactive application.
- identifies with the professional and ethical value system relating to his/her professional field.
- endeavours to design and complete the tasks at a professionally high level individually or in teamwork.
- is characterised by continuous readiness to learn, profound and in-depth education, highly developed analytic and synthetic skills, environmental sensitivity.
- is ethically strong, critical and self-critical.

- is capable of cooperation, teamwork and completing leadership tasks individually followed by the necessary amount of practice.
- shows respect for other people's professional opinion, results.
- is characterised by system-based thinking and approach.

Autonomy and responsibility:

- is capable of solving engineering-economic-like tasks individually.
- is careful before individually making decisions in consultation with representatives from diverse fields (primarily that of engineering, economics, law). He/she takes responsibility for his/her decisions.
- is characterised by initiative, responsibility and decision-making ability.
- when making decisions he/she takes into account health and safety at work; engineering, economic and legal regulations; professional-ethical aspects.
- evaluates his/her inferiors' work, facilitates professional development through his/her critical remarks, educates them to take responsibility and shows ethical behaviour in their professional field.
- is able to individually keep track of technical, technological, economic, financial, legal, social changes, problem-solving techniques, global social and economic processes in relation to his/her professional field.

Specializations

Students select a specialization prior to enrolling on the program. The minimum number of applicants per specialization shall be 10.

Certain subject groups are common for all Engineering Management MSc students (scientific knowledge, economics and humanities, field-specific subjects). The subject group "Differentiated Field-specific Subjects" contains specialized topics and fields.

COMPLETION OF THE ACADEMIC PROGRAM The Credit System

Majors in the Hungarian Education System have generally been instituted and ruled by the Act of Parliament under the Higher Education Act. The higher education system meets the qualifications of the Bologna Process that defines the qualifications in terms of learning outcomes: statements of what students know and can do on completing their degrees. In describing the cycles, the framework uses the European Credit Transfer and Accumulation System (ECTS).

ECTS was developed as an instrument of improving academic recognition throughout the European Universities by means of effective and general mechanisms. ECTS serves as a model of academic recognition, as it provides greater transparency of study programmes and student achievement. ECTS in no way regulates the content, structure and/or equivalence of study programmes.

Regarding each major the Higher Education Act prescribes which professional fields define a certain training program. It contains the proportion of the subject groups: natural sciences, economics and humanities, subject-related subjects and differentiated fieldspecific subjects.

For the Engineering Management MSc programme, the following professional fields define the training:

- Natural Sciences (Mathematics, Physics, Chemistry and other subjects, e.g. Quantitative Methods, Mechanics, Ecology, Nanotechnology, Econometry) 20-35 credit points;
- Economics and Humanities (International Management and Economics, Analysis of Competitiveness, Labour Economics, Sustainable Development, Organisational Improvement, Human Resources Management, Communication Skills), other professional skills defined in the curriculum: 10-20 credit points;
- Engineering Management [System Analysis, Design and Control of Systems, Process Control, Technologies in different branches (engineering industry, chemical industry, nanotechnology, biotechnology, waste management), other professional skills defined in the curriculum]: 15-35 credit points.

Credit points assigned to field-specific subjects along with thesis: 40-60.

Minimum of credit points assigned to optional subjects: 6

Credit points assigned to thesis: 30

Credits total: 120

During the program students have to complete a total amount of 120 credit points. It means approximately 30 credits pro semester. The curriculum contains the list of subjects (with credit points) and the recommended order of completing subjects which takes into account the prerequisite(s) of each subject.

There is a certain degree of freedom in the order students can complete the subjects. However, it is recommended that the suggested order be followed because some subjects can only be taken after the completion of the prerequisite subject(s), and/or can be the prerequisites for other subjects. You can find the recommended list of subjects in chapter "Guideline".

Guideline (Lisf of Subjects/Semesters)

The total number of credit points (120) of the training program can be obtained by completing the subjects of the curriculum. There is a certain degree of freedom in the order students can complete the subjects. However, it is recommended that the suggested order be followed because some subjects can only be taken after the completion of the prerequisite subject(s), and/or can be the prerequisites for other subjects.

About the prerequisites of each subject please read the chapter "Course Descriptions"!

The list of subjects one must complete during the semesters according to the model curriculum of Engineering Management MSc programme **Construction Industry specialization**.

1 st semester	2 nd semester
Quantitative Methods Applied Mathematics in Manufacturing Design Development of Organization and Human Resource Advanced Corporate Finance Negotiation and Conflict Management Risk and Reliability Building Energetics II Optional subject Work and Fire Safety	Econometrics Introduction to Nanotechnology Applied Engineering Advanced Quality Management Control of Integrated Information System Organization of Construction Processes in BIM Environment Complex Project Industrial Internship Optional subject
3 rd semester International and Management Accounting Operation Management Project Leadership Reconstruction MSc Thesis I	4 th semester Modeling and Systems Approach in the Mechanics of Structures Leadership Competencies Development Construction Management III MSc Thesis II

The list of subjects one must complete during the semesters according to the model curriculum of Engineering Management MSc programme **Industrial Process Engineering specialization**:

1 st semester	2 nd semester
Quantitative Methods Applied Mathematics in Manufacturing Design Development of Organization and Human Resource Advanced Corporate Finance Negotiation and Conflict Management Risk and Reliability Production Technologies Optional subject Work and Fire Safety	Econometrics Introduction to Nanotechnology Applied Engineering Advanced Quality Management Control of Integrated Information System Cellular Manufacturing Complex Project Industrial Internship Optional subject
3 rd semester	4 th semester
International and Management Accounting Operation Management Project Leadership Advanced Applied Engineering MSc Thesis I	Modeling and Systems Approach in the Mechanics of Structures Leadership Competencies Development System Engineering MSc Thesis II

The list of subjects one must complete during the semesters according to the model curriculum of Engineering Management MSc programme **Material Handling and Logistics specialization**:

1 st semester	2 nd semester
Quantitative Methods Applied Mathematics in Manufacturing Design Development of Organization and Human Resource Advanced Corporate Finance Negotiation and Conflict Management Risk and Reliability Digital Logistics Optional subject Work and Fire Safety	Econometrics Introduction to Nanotechnology Applied Engineering Advanced Quality Management Control of Integrated Information System Advanced Production Logistics Complex Project Industrial Internship Optional subject
3 rd semester	4 th semester
International and Management Accounting Operation Management Project Leadership Advanced Warehouse Systems MSc Thesis I	Modeling and Systems Approach in the Mechanics of Structures Leadership Competencies Development Planning of Logistics Systems MSc Thesis II

Work and Fire Safety Course

According to the Rules and Regulations of the University of Debrecen students have to complete the online course for work and fire safety in the first semester of their studies. Registration for the course and completion are necessary for graduation. For MSc students the course is only necessary only if BSc diploma has been awarded outside of the University of Debrecen.

Registration in the Neptun system by the subject: MUNKAVEDELEM

Students have to read an online material until the end to get the signature on Neptun for the completion of the course. The link of the online course is available on webpage of the Faculty.

Physical Education

According to the Rules and Regulations of University of Debrecen a student has to complete Physical Education courses at least in one semesters during his/her Master's training. Our University offers a wide range of facilities to complete them. Further information is available from the Sport Centre of the University, its website: <u>http://sportsci.unideb.hu</u> or on the webpage of the Faculty: <u>https://eng.unideb.hu/en/node/214</u>.

Optional Courses

According to the Rules and Regulations of the University of Debrecen a student has to complete elective courses during his/her Master's training. These elective courses are opened by the Departments at the Faculty of Engineering at the beginning of the actual semester. You can find the list of the actual semester under "Current Students">"Useful Information about your Study">"Optional subjects".

A student can also select optional courses from other faculties of University of Debrecen to complete.

In the Engineering Management MSc programme, you have to gain at least 6 credits by completing elective subjects.

Pre-degree Certification

The pre-degree certificate verifies in the Neptun that the student has successfully completed the study and exam requirements as set out in the curriculum, namely gained the necessary credit points (120), completed all the required subjects and the criterium subjects (Physical Education, Internship, Work and Fire Safety course). Submitting thesis is not a requirement for the pre-degree certificate. Student status ends at the end of that semester when the pre-degree certificate is obtained.

Students who obtained the pre-degree certificate can take the final exam. Final exam can be taken in the final exam period of both the fall semester and the spring semester.

If the final exam is taken within two years after obtaining the pre-degree certificate, the conditions are the same as the ones effective in the academic year of the student's starting year.

If the final exam is taken more than two years after obtaining the pre-degree certificate the conditions of taking the exam are stipulated by the Faculty.

No final exam can be taken later than five years after the termination of the student status.

Thesis

Thesis is the creative elaboration of a professional task (fields: engineering processes, finance, economics, marketing, corporate finance, management, quality and environment controlling, production and banking) in written form as defined in the requirements of the training program. By solving the task, the student relies on his/her studies using national and international literature under the guidance of an internal and external supervisor. By preparing and defending thesis, students who complete the Engineering Management master's program prove that they are capable of the practical applications of the acquired skills, summarizing the work done and its results in a professional way, creatively solving the tasks related to the topic and doing individual professional work.

Students in the master program must write a thesis as a prerequisite of the final exam. Requirements regarding the content of the thesis, the general aspects of evaluation and the number of credits assigned to it are defined based on the requirements of the program. In Engineering Management Master Programme the number of credits assigned to the thesis is 30.

Thesis topics are announced by the departments until the end of Week 4 of the study period of the last but one semester. The department hands out thesis guides to assist

students with preparing their thesis. Students may also offer a topic for the thesis, which the competent head of the department may accept or reject. The conditions on the acceptance of a SSS (Student Scientific Society) paper as a degree thesis are defined by the Faculty. SSS papers are supposed to meet the requirements of a thesis both in form and content. Furthermore, it is necessary that the committee of the Pre-SSS make suggestions on the SSS papers to be accepted as theses.

Thesis is prepared under the guidance of an internal supervisor previously approved by the department and with the assistance of an external supervisor also previously approved by the department.

The thesis submission deadline is defined in the academic calendar of the Faculty (issued by the Vice-Rector for Education) or, failing that, the Head of the Department sets the date.

Thesis is evaluated by a reviewer. Based on the review, the internal supervisor makes suggestions for the evaluation of thesis. Finally, the committee assesses it on a five-grade scale. If the reviewer evaluates the thesis firmly as fail, the student may not take the final exam and must create a new thesis. Students must be informed about it. Conditions on resubmitting the thesis are designated by the head of the relevant educational unit responsible for the major or specialization.

Final exam

After obtaining the pre-degree certificate, students conclude their studies in the Engineering Management master's (MSc) program by taking the final exam. The final exam shall test and assess the knowledge, skills and abilities requisite to the award of the degree, whereby students shall also prove their ability to apply the acquired knowledge in practice. The conditions for taking the final exam and the parts of the final exam itself shall be defined in the requirements for the training program (see entry 'Completion of studies'). The final exam shall be taken in front of a board in the examination period following the award of the pre-degree certificate. If a candidate does not pass the final exam any time after the termination of his/her student status, that student can sit for the final exam any time after the termination of his/her student status according to the provisions regarding the final exam, effective at the time of taking the final exam.

The final exam consists of different parts:

- 1. thesis defence, answers to possible questions, remarks;
- 2. oral exam
- a. Integrated Management Module (for all specializations):
questions and topics related to the subjects Advanced Corporate Finance, Operation Management, Advanced Quality Management, Project Leadership.

b. Engineering modules depending on the specialization:

Engineering Module – Industrial Process Engineering Specialization: questions and topics related to the subjects: *Production Technologies, Cellular Manufacturing, Advanced Applied Engineering, System Engineering.*

Engineering Module – Construction Industry Specialization:

questions and topics related to the subjects: *Building Energetics II, Organization of Construction Processes in BIM Environment, Reconstruction, Construction Management III.*

Engineering Module – Material Handling and Logistics Specialization: questions and topics related to the subjects: *Advanced Production Logistics, Digital Logistics, Advanced Warehouse Systems, Planning of Logistics Systems.*

The requirements for the oral part of the final exam and the agenda of the topics with the indication of their literature are announced by the department no later than the last week of the study period. The oral examination shall be assessed on a five-grade scale by the members of the final examination board. The board shall then consult behind closed doors and vote about the final grade for the final exam. In case of equal division of the votes, the chairperson shall be given the casting vote. The result of the final exam shall be announced by the chairperson of the board. Minutes shall be taken during the final examination. The marking scheme contains the diploma grade and the grades awarded for the different parts of the final exam.

Improving failed final exam

If any parts of the final exam are evaluated as fail, according to the existing rules of the university, it can be retaken. The retake of the final exam may be attempted in the following examination period at the earliest.

Final examination board

The chair of the final exam board shall be delegated and by the dean of the faculty. He/she is selected from among the acknowledged internal and external experts of the professional field. The final exam board consists of – besides the chairperson – at least two members and the required number of examiners. The length of the appointment of membership in the final exam board shall be one year. Students are assigned to different examination boards by the department.

COURSE DESCRIPTIONS FOR ENGINEERING MANAGEMENT MSC

The order of subject follows the subject list of the model curriculum (see Appendix).

Subject group "Science Knowledge" (for all 3 specializations)

Quantitative Methods

Code: MK5KVANA04MX17-EN ECTS Credit Points: 4 Evaluation: mid-semester grade Year, Semester: 1st year, 1stsemester Number of teaching hours/week (lecture + practice): 2+2

Topics:

Basics of probability calculus (probability space, conditional probability, independence of events, random variables, distributions sights, the law of large numbers); Sampling methods, descriptive statistics; Estimates (the estimated properties, point estimates, interval estimates); Non-parametric tests (fit testing, homogeneity, independence test); Parametric tests (Tests for the expected value and the standard deviation); The basic tasks of linear programming, applications; Time series analysis; Statistics in quality management (Statistical Process Control, Six Sigma); Simulation, Monte Carlo methods; Decision theory, decision model, decision matrix, decision-making process; Game theory

Literature:

Compulsory:

- Rice, J. A. (2007): Mathematical statistics and Data Analysis. Belmont. Thomson's.
- Wolfram, S. (2003): The mathematica book. Champaing. Wolfram Media.

Recommended:

- STATISTICS Methods and Applications:
- http://www.statsoft.com/textbook
- Murphy, P.: Introduction to Quantitative Methods:
- http://www.ucd.ie/statdept/classpages/introductiontoquantitativemet.htm
- Investopedia (www.investopedia.com) CFA Level 1 Chapter 2: Quantitative Methods:
- http://www.investopedia.com/study-guide/cfa-exam/level-1/quantitativemethods/
- Cornuejols, G. Trick, M.: Quantitative Methods for the Management Sciences (Course Notes)

• http://mat.gsia.cmu.edu/classes/QUANT/

Schedule

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Survey of probability calculus (probability space, conditional probability).	Lecture: Discrete and continuous random variables.
Practice: Problems related to probability calculus.	Practice: Problems related to random variables.
4 th week:	5 th week:
Lecture: Special random variables (binomial, Poisson, exponential, uniform and normal distribution).	Lecture: Basics of statistics: point estimation, interval estimation, hypothesis testing
Practice: Problems related to random variables.	Practice: Hypothesis testing
6 th week:	7 th week:
Lecture: Normality test, one- and two- factor ANOVA	Lecture: Normality test, one- and two-factor ANOVA
Practice: ANOVA	Practice: ANOVA
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Types of optimization problems: unconstrained and constrained	Lecture: Methods of optimization: derivative-based optimization.
optimization. Practice: Problems related to optimization.	Practice: Problems related to derivative-based optimization.
11 th week:	12 th week:
Lecture: Derivative-free optimization I (genetic algorithms, neural networks).	Lecture: Basics of decision theory – decision model, decision matrix, decision-making
Practice: Problems related to derivative-free optimization.	process. Practice: Process simulation
13 th week:	14 th week:
Lecture: Basics of game theory	Lecture: Markov chains.
Practice: Problems related to game theory.	Practice: Problems related to Markov chains.

15th week: 2nd drawing week

A, for a signature:

Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three occasions during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students can't take

part in any practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed practice classes must be made up for at a later date, being discussed with the tutor.

During the semester there are two tests: the mid-term test on the 8^{th} week and the end-term test on the 15^{th} week. Students must sit for the tests.

B, for a grade:

The grade is based on the average grade of the two tests.

The minimum requirement of the mid-term and the end-term test is 60% separately. The grade for each test is given according to the following (score/grade): 0-59 % = fail (1); 60-69 % = pass (2); 70-79 % = satisfactory (3); 80-89 % = good (4); 90-100 % = excellent (5).

If the score of any test is below 60, the student once can take a retake test of the whole semester material.

Applied Mathematics in Manufacturing Design

Code: MK5AMTTM04MX18-EN ECTS Credit Points: 4 Evaluation: exam grade Year, Semester: 1st year, 1st semester Number of teaching hours/week (lecture + practice): 1+2

Topics:

The applied mathematics in manufacturing design course is covered the following topics: Business Forecasting and product lifecycle, time series forecasting, capacity analysis of machine, Models and indicators in production system, inventory design, aggregate planning. At the end of the semester the student should be have a basic understanding of design, and schedule manufacturing system.

Literature:

Compulsory:

- Wayne L. Winston: Operations research: Applications and Algorithm, 4th Edition, Brook/Cole, Canada, 2004, ISBN: 978-0534380588
- William J. Stevenson: Operations management, 13th ed., McGraw-Hill Education
 New York, 2018, ISBN 978-125-9921-81-0
- Stephen N. Chapman, J. R. Tony Arnold, Ann K. Gatewood, Lloyd M. Clive: Introduction to Materials Management, 8th. global ed., Pearson New - Jersey, 2016, ISBN: 978-1-292-16235-5

Recommended:

• Steven Nahmias, Tava Lennon Olsen: Production and Operations Analysis, 7th ed., Waveland press, Inc., - Long Grove Illinois, 2015, ISBN 978-1-4786-2306-9

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Applied mathematics in manufacturing processes: introduction to production and service operations. Components of demand.	Lecture: Competitiveness, productivity, model of manufacturing systems. Practice: Determination of manufacturing system's components. Productivity –
Practice: Knowledge survey – solved problem.	problem solving.
4 th week:	5 th week:
Lecture: Introduction to Forecasting. Elements, steps in the forecasting process. Qualitative Forecasts.	Lecture: Monitoring forecast error. Choosing a forecasting technique, using forecast information.
Practice: Forecast based on time series data.	Practice: Associative forecasting technique.
6 th week:	7 th week:
Lecture: Capacity planning for products and services, waste in the manufacturing.	Lecture: Service level improving. Capacity planning for services.
Practice: Determination of real and theoretical capacity. Bottleneck in process – developing capacity strategies.	Practice: Developing capacity strategies for services.
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Define the term of Inventory,	Lecture: Basic Economic Order Quantity.
functions of inventories.	Practice: Deterministic Inventory Models.
Practice: Inventory (stock) control.	
11 th week:	12 th week:
Lecture: Introduction to Aggregate	Lecture: MRP - Inputs of MRP, steps of MRP.
planning. Practice: Techniques for Aggregate planning.	Practice: MRP processing.
13 th week:	14 th week:
Lecture: Waiting Lines Management – Implications, goals characteristics.	Lecture: Lean operation – characteristics of lean systems. Building blocks.

Practice: Queuing models.

Practice: Lean tools.

15th week: 2nd drawing week

Requirements

A, for a signature:

Participation at practice is compulsory. Students must attend lectures and may not miss more than three of them during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at lectures will be recorded by the lecturer. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed lectures must be made up for at a later date, being discussed with the tutor.

End of the semester the students must write a test for signature. The minimum requirement of the test is 60%. If the score of test is below 60% the student once can take a retake test of the whole semester material until 1st week of the exam period. If the result is 60 % or better the retake test is success.

B, for grade:

B, for a grade:

The course ends in an examination in the exam period.

The grade is given according to the following (score/grade): 0-59 % = fail (1); 60-69 % = pass (2); 70-79 % = satisfactory (3); 80-89 % = good (4); 90-100 % = excellent (5).

Econometrics

Code: MK5OKONM04MV17-EN ECTS Credit Points: 4 Evaluation: exam Year, Semester: 1st year, 2ndsemester Number of teaching hours/week (lecture + practice): 1+3

Topics:

The objective of this course is to prepare students for basic empirical work in economics. This course aims to make students familiar with the basic concepts of econometric analysis. In particular, the course will be focused on the data analysis, regression analysis, testing, and forecasting. By the end of the course, the student should be able to understand the scope and limitations of classical econometric techniques, read, write and properly interpret articles and reports of an applied econometric nature using these techniques.

Literature:

Compulsory:

- Wooldridge, J. (2013): Introductory Econometrics: A Modern Approach Upper Level Economics Titles Series. South-Western Cengage Learning. ISBN: 1111531048, 9781111531041. Fifth Edition.
- Ramanathan, R. (2002): Introductory econometrics with applications. Harcourt College Publishers. Fifth Edition. ISBN: 0-03-034342-9.

Recommended:

- Brooks, C. (2008): Introductory Econometrics for Finance. Second Edition. Cambridge University Press. ISBN: 1139472305, 9781139472302.
- Dougherty, C. (2011): Introduction to Econometrics. Fourth Edition. Oxford University Press. ISBN: 978-0-19-956708-9.

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: The nature of econometrics and the structure of economic data Introduction (Types of data, Data sources, The structure of economic data, steps of empirical analysis, econometric model, Mean, Mode, Median, Measures of dispersion) Practice: Calculating Problems – Computer related problems	Lecture: Relationship among variables - Correlation Analysis (Types of correlation, Scatter diagrams, Correlation graph, Pearson's coefficient of correlation, rank correlation) Practice: Correlation (negative and positive correlation – examples, linear and non- linear correlation, Properties of Pearson Correlation Coefficient, Calculations for Coefficient of Correlation.
4 th week:	5 th week:
Lecture: Linear Regression – The simple regression model I. Deriving the Ordinary Least Squares Estimates	Lecture: Linear Regression – The simple regression model II Goodness of Fit Practice: Calculating Problems - total sum of squares (SST), the explained sum of squares
Practice: Calculating Problems – Computer related problems. (Dependent – independent variable, error term, fitted values and residuals, Algebraic Properties of OLS Statistics)	(SSE), and the residual sum of squares (SSR), R-squared of the regression.
6 th week:	7 th week:
Lecture: The Expected of the OLS estimators The Variances of the OLS Estimators - Unbiasedness of OLS Practice: Calculating Problems – Computer exercises	Lecture: Estimating the Error variance; (Variances of the OLS Estimators, Heteroskedasticity, homoskedasticity) Practice: Sampling Variances of the OLS Estimators, Case study analysis

8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Hypotheses Testing: The t Test, Confidence intervals, The F test	Lecture: Nonlinear regression model I - Linearization
Practice: Calculating Problems – Computer related problems. (Confidence intervals, F and t statistics)	Practice: The linearized regression - Logarithmic Functional Forms; Quadratic function, The double logarithmic functions
11 th week:	12 th week:
Lecture: Non-linear regression model II Practice: Functional forms - exponential, hyperbolic, polynomial model	Lecture: Multiple regression analysis I - estimation
	Practice: The Model with Two Independent Variables (Obtaining the OLS Estimates, Interpreting the OLS Regression Equation - interpreting of the coefficients)
13 th week:	14 th week:
Lecture: Multiple regression analysis II - estimation	Lecture: Time series data analysis (The nature of time series data, Time series regression models, index numbers)
Variables – computer related problem	Practice: Computer related problems – Complex model problem (estimation of time series regression model)

15th week: 2nd drawing week

Requirements

A, for a signature:

Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three occasions during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students can't take part in any practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed practice classes must be made up for at a later date, being discussed with the tutor.

During the semester there are two tests: the mid-term test on the 8th week and the end-term test on the 15th week. Students must sit for the tests.

B, for a grade:

The course ends in an examination.

The minimum requirement of the mid-term, the end-term test and the teamwork is 50% separately. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following table:

The grade is given according to the following: 0-49 = fail; 50-62 = pass(2); 63-75 = satisfactory(3); 76-89 = good(4); 90-100 = excellent(5).

If the score of any test is below 50, the student once can take a retake test of the whole semester material.

An offered grade: It may be offered for the students if the average of the mid-term test, end-term tests and the teamwork is at least good (4). The offered grade is the average of them.

Introduction to Nanotechnology

Code: MK5NANOM04MX17-EN ECTS Credit Points: 4 Evaluation: exam Year, Semester: 1st year, 2nd semester Number of teaching hours/week (lecture + practice): 1+2

Topics:

The chemistry and physics nanotechnology importance of two aspects may take: structure for the operation of chemical nanotechnology devices, respectively, development of physical methods and onset of nanotechnology tools and processes chemical, physical, physical-chemical interactions. The aim of this course is describing the importance of nanotechnology in practice and the role of chemistry and physics in development of nanotechnology.

Literature:

Compulsory:

- Bharat Bhushan (ed.): Springer handbook of nanotechnology, (2004) Berlin, New York, Springer-Verlag
- Alain Nouailhat: An Introduction to Nanoscience and Nanotechnology, (2008) WILEY, London
- Duncan Shaw: Introduction to Colloid and Surface Chemistry, (1992) Butterworth-Heinemann, Oxford

Recommended:

- Peter Fratzl, John W.C. Dunlop, Richard Weinkam (ed.): Materials Design Inspired by Nature: Function Through Inner Architecture, (2013), RCS Publishing
- Gabor L. Hornyak, J. J. Moore, H.F. Tibbals, J. Dutta: Fundamentals of Nanotechnology, (2008), CRC Press

Schedule

1st week Registration week

2 nd week:	3 rd week:
Lecture: Introduction to the course, Historical perspective of micro and nano- manufacturing technology, advantages and applications of nanotechnology.	Lecture: Materials overview, atomic structure, bonding, polymers, electrical characteristics, crystal structures and defects, physical chemistry of solid surfaces
Practice: Ethics and environmental effects of nanotechnology. Safety Education.	Practice: Real crystal structures models building
4 th week:	5 th week:
Lecture: Physical and chemical properties of materials Introduction to composites materials and their application.	Lecture: Overview of nano fabrication methods: top-down and bottom-up approaches.
Practice: Materials properties modification at different temperatures.	Practice: Effects of grain size variation.
6 th week:	7 th week:
Lecture: Nanomaterial characterization Observing with electrons. Practice: Application of scanning electron	Lecture: Characterization techniques, Optical microscopy, Spectrophotometer, AFM, FFM, TEM, X-ray.
microscope, Investigation of nano structures.	Practice: EDS - Energy Dispersive X-ray Spectroscopy.
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Introduction to colloid chemistry sol-gel processing, applications.	Lecture: Dispersion in physical and chemical systems.
Practice: Making of colloid structure.	Practice: Investigation of colloid structures.
11 th week:	12 th week:
Lecture: Introduction to the rheology of complex fluids.	Lecture: Fundamentals of electrochemistry.
Practice: Rheological characterization of Fluids – suspensions, emulsions.	Practice: Industrial applications, Determination of concentration by conductivity.
13 th week:	14 th week:
Lecture: Organic compounds and bio- applications of nano-materials.	Lecture: Nanomaterial inspired by nature Practice: Nature tech application.
Practice: Application of bio- and chemi- sensors, Sensor technologies.	

A, for a signature:

Participation at practice is compulsory. Students must attend lectures and may not miss more than three of them during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at lectures will be recorded by the lecturer. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed lectures must be made up for at a later date, being discussed with the tutor.

End of the semester the students must write a test for signature. The minimum requirement of the test is 60%. If the score of test is below 60% the student once can take a retake test of the whole semester material until 1st week of the exam period. If the result is 60 % or better the retake test is success.

B, for a grade:

The course ends in an examination in the exam period in written.

The grade is given according to the following (score/grade): 0-59 % = fail (1); 60-69 % = pass (2); 70-79 % = satisfactory (3); 80-89 % = good (4); 90-100 % = excellent (5).

Modelling and Systems Approach in the Mechanics of Structures

Code: MK5MOMEM04MX21-EN ECTS Credit Points: 4 Evaluation: exam Year, Semester: 2nd year, 2nd semester Prerequisite: Applied Mathematics in Manufacturing Design Number of teaching hours/week (lecture + practice): 1+2

Topics:

Students will gain an overview of the modelling and systems approach used in the mechanics of structures.

During the lectures, the students get acquainted with the unified modelling of the mechanical examination of different structures (structures, equipment, machines, motor vehicles and aircraft) occurring in different fields (mechanical engineering, construction, transport), the steps of modelling.

The course presents the independent modelling of elementary structures, the definition of the limitations of modelling, the unified approach to the mechanical behaviour of

structures, the analogue (systemic) way of determining the relationships of individual theories, and the unified procedure of structure analysis.

The exercises are task-oriented: students are introduced to the relationships and FEMbased programs that can be used to predict the mechanical behaviour of a structure.

Students deepen their theoretical knowledge and develop their skills, partly by solving tasks in practical classes and partly by processing individual problems at home.

Literature:

Compulsory:

- Wunderlich, W. Pilkey, W.D.: Mechanics of Structures. Variational and Computational Methods. Second Edition. CRC Press, Boca Raton, 2019. 892 pp.
- Kurrer, K-E.: The History of the Theory of Structures. From Arch Analysis to Computational Mechanics. Ernst & Son, Berlin, 2008.
- Villaggio, P.: Mathematical Models for Elastic Structures. Cambridge University Press, 1st 1997. Digitally printed v. 2013.
- Hartmann, F.: The Mathematical Foundation of Structural Mechanics. Springer-Verlag, Berlin - Heidelberg - New York, 1985.
- •

Recommended:

- Przemieniecki, J. S.: Theory of Matrix Structural Analysis. Dover Publications Inc. Minneola, New York, 2012. (McGraw-Hill, 1968)
- Oliveira, E.R.A.: Foundations of the Mathematical Theory of Structures. Springer-Verlag, Berlin - Heidelberg - New York, 1975.
- Lámer G.: Deduction of Two- and Single-Variable Problems from the Three-Variable Problem = Newsletter, Techn. Univ. of Budapest, II (1), 1984. pp. 5-11
- Lámer G.: Geometric Forms Structures Numerical Methods = Newsletter, Techn. Univ. of Budapest, II (2), 1984. pp. 23-34
- Lámer G.: On a Unified Interpretation of the Theory of Shells and Rods = Newsletter, Techn. Univ. of Budapest, III (3), 1985. pp. 5-11.

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Part I. Modelling. Elements of modelling	Lecture: Mechanical states of single variable structures

Practice: Basic concepts of strength of materials	Practice: Investigation of single variable structures as a function of load and boundary condition
4 th week:	5 th week:
Lecture: Mechanical states of two variable structures	Lecture: Examining the limitations of the model
Practice: Investigation of single variable structures as a function of load and boundary condition	Practice: First test (or submission of the first semester task
6 th week:	7 th week:
 Lecture: II. part. Systems approach Unique geometric shapes. Geometric and mechanical characteristics Practice: Classification of line and surface structures based on base curve / base surface and cross section 	 Lecture: Derivation of two- and single variable problems from a three-variable problem. Interpretation of two- and single variable theories Practice: Finite column and slice versus rod and shell theory. The rigid, shear and contract cross section
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Numerical methods. Domain decomposition method Practice: Numerical methods as a function of the basic functions and the error principle	Lecture: Variational methods Practice: Second test (or submission of the second semester task

A, for a signature: Two positive tests, or two positive semester tasks

B, for a grade: Two positive tests or two positive semester tasks (50 %) and oral and written exam (50%)

Development of Organization and Human Resource

Code: MK5SZEMM04MX17-EN ECTS Credit Points: 4 Evaluation: exam Year, Semester: 1st year, 1stsemester Number of teaching hours/week (lecture + practice): 2+2

Topics:

The aim of this course is describing the organizational changes and the management of organizational development processes, tools and models through processing case studies.

Literature:

Compulsory:

- Mee-Yan Cheung-Judge, Linda Holbeche (2015): Organization Development: A Practitioner's Guide for OD and HR. Kogan Page; 2 edition. ISBN-10: 0749470178
- W. Warner Burke, Debra A. Noumair (2015): Organization Development: A Process of Learning and Changing. Pearson FT Press; 3 edition. ISBN-10: 0133892484
- W. Warner Burke (2013): Organization Change: Theory and Practice (Foundations for Organizational Science series). SAGE Publications, Inc; 4 edition. ISBN-10: 145225723X
- Raymond Noe, John Hollenbeck, Barry Gerhart, Patrick Wright (2013): Fundamentals of Human Resource Management with Connect Plus. McGraw-Hill/Irwin; 5 edition. ISBN-10: 0077801989
- Robert N. Lussier, John R. Hendon (2012): Human Resource Management: Functions, Applications, Skill Development. SAGE Publications, Inc; 1 edition. ISBN-10: 1412992427Recommended:

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Situation analysis, Organizational Structure Determination, job Descriptions, information flow	Lecture: Identification of problems, exploring the causes of problems, Appointment of intervention points Practice: Ishikawa and pareto analyses, What you need to improve?

Practice: SWOT, PEST, BCG, Drawing an organization chart and information flow map	
4 th week:	5 th week:
Lecture: The designation of specific (quantitative and qualitative) development goals, Appointment of persons involved in organizational development	Lecture: Establish a timetable Practice: Gantt chart
intervention points, Assigning tasks	
6 th week:	7 th week:
Lecture: Ordering quantitative and qualitative indicators of the planned interventions	Lecture: Planning corrective actions Practice: PDCA cycle
Practice: SMART method	
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Human resource management planning system, Strategies, planning, evaluation	Lecture: Job and competence analysis, Elements and analyzes of the job system, Process analysis
Practice: Creating a concrete strategy	Practice: Job and competence analysis based on case studies
11 th week:	12 th week:
Lecture: Resource insurance systems, Recruitment, selection, insertion and retraction Practice: Case study, situational tasks	Lecture: Career management, Lifetime phases, career components Practice: Creating a career plan
13 th week:	14 th week:
Lecture: Performance Management and Performance Evaluation Systems, Design	Lecture: Staff Development System and employee relations system
Practice: Case study	Practice: Case study
15 th week: 2 nd drawing week	

A, for a signature:

Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three practice classes during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students can't take part in any practice class with another group. Attendance at practice classes will be

recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed practice classes must be made up for at a later date, being discussed with the tutor.

During the semester there is one test: the end-term test is on the 15th week. Students must sit for the test. The minimum requirement of the test is 60%. If the score of test is below 60% the student once can take a retake test of the whole semester material until 1st week of the exam period. If the result is 60 % or better the retake test is success.

B, for a grade:

The course ends in an examination.

The grade is given according to the following: 0-59 % = fail (1); 60-69 % = pass (2); 70-79 % = satisfactory (3); 80-89 % = good (4); 90-100 % = excellent (5).

Advanced Corporate Finance

Code: MK5HVLPM04MX17-EN ECTS Credit Points: 4 Evaluation: exam Year, Semester: 1st year, 1stsemester Number of teaching hours/week (lecture + practice): 1+3

Topics:

Cash flow analysis. Future value of money and present value of money. The relationship between future value and present value. Economic evaluation of investments with identical (different life-times). Investment decision making processes. The value of bonds Project Analysis. Capital investment process; Sensitivity analysis, Option algebra. Investments and economic rents. The relationship between risk and return. Examination of portfolio risk. Valuation of stocks, Economic and market value added.

Literature:

Compulsory:

- T. Kiss Judit (2016): Introduction to Corporate Financial Decisions for Engineers and Engineering Managers. Debrecen, University Press. ISBN: 978963318583 4.
- Brealey, R. A. Myers, S. C. Allen, F (2011): Principles of Corporate Finances. McGraw-Hill/Irwin. ISBN: 0077356381, 9780077356385
- Ogden, J. Jen, F. C. O'Connor, P. F. (2002): Advanced corporate finance. Prentice Hall. ISBN-10 0130915688

Recommended:

• Scott Besley - Eugene F. Brigham (2011): Principles of Finance. Cengage Learning. ISBN: 1111527369, 9781111527365

Schedule

2nd week:

Lecture: Corporate finance investment and financing decisions. The financial goal of the corporation. Future value calculation I.

Practice: Preparatory overview of financial calculation I. Calculation Problems – Cash flow analysis. Future value and present value. Continuous compounding.

4th week:

Lecture: The present value of an investment opportunity. Net Present Value. The opportunity cost of capital. Profitability index.

Practice: Calculation Problems – Net present value. Profitability Index and Modified Profitability Index calculation.

6th week:

Lecture: Making investment decisions II.

Practice: Calculation Problems – equivalent annual cost- choosing the discount rate, choosing among projects.

8th week: 1st drawing week

9th week:

Lecture: Valuation of bonds I, Market value added - Economic value added.

Practice: Price and interest rate, time to maturity. Relationship between price and Face value. Interest rate and Coupon rate. Calculation Problems.

11th week:

3rd week:

Lecture: Review of the future value and present value calculation.

Practice: Preparatory overview of financial calculation II.Calculation exercises: Ordinary annuity and annuity due. Review of the future value and present value calculation. Valuing Cash Flows in Several Periods.

5th week:

Lecture: Net present value and other investment criteria. Making investment decisions I. Investment in Physical Capital and Human Capital.

Practice: Calculation Problems/computer related problems – Internal rate of return, modified IRR, problem of limited resources.

7th week:

Lecture: Investment decisions – economic rent – purchasing decisions, annuities. Complex investment problem - Sensitivity analysis. Interest rates, risk, inflation and present value.

Practice: Calculation Problems, Complex investment problem – computer related problems.

10th week:

Lecture: Valuation of bonds II, Yield to Maturity estimation, Duration, volatility.

Practice: Yield to maturity, and yield to call Risk and rates of return, cost of capital. Computer related problems.

12th week:

Lecture: The value of Common Stocks. Portfolio analysis. Portfolio returns and risk. Practice: Portfolio analysis – Calculation problems.	Lecture: Options I. (Call options, put options). Exercise price. Position and profit diagram. Practice:Calculation Problems – computer related problems.
13 th week:	14 th week:
Lecture: Options II. – Option algebra	Lecture: Integrated financial/ investment
Practice: Option strategies – computer related problems (bull, bear call/put spread, call/put butterfly, Call/put straddle options).	problems. International investment decisions. Practice: Computer related problems.
15 th week: 2 nd drawing week	

A, for a signature:

Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three occasions during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students can't take part in any practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed practice classes must be made up for at a later date, being discussed with the tutor.

During the semester there are two tests: the mid-term test on the 8th week and the end-term test on the 15th week. Students must sit for the tests.

B, for a grade:

The course ends in an examination.

The minimum requirement of the mid-term, the end-term test and the teamwork is 50% separately. Based on the score of the tests separately, the grade for the tests and the examination is given according to the following table:

The grade is given according to the following (score/grade): 0-49 % = fail (1); 50-62 % = pass (2); 63-75 % = satisfactory (3); 76-89 % = good (4); 90-100 % = excellent (5).

If the score of any test is below 50, the student once can take a retake test of the whole semester material.

An offered grade: It may be offered for the students if the average of the mid-term test, end-term tests and the teamwork is at least good (4). The offered grade is the average of them.

Negotiation and Conflict Management

Code: MK5TKOMM04MX17-EN

ECTS Credit Points: 4 Evaluation: mid-semester grade Year, Semester: 1st year, 1st semester Number of teaching hours/week (lecture + practice): 1+2 **Topics**:

Negotiation and Conflict Management

Literature:

Miscellaneous articles, clippings and videos of the most recent literature published in the Harvard Business Review

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: What Makes an Effective Negotiation? 1	Lecture: What Makes and Effective Negotiation? 2
Practice: the elements of an effective negotiation discussed, how negotiations work and what can go wrong during the preparations or at the negotiating table	Practice: the elements of an effective negotiation discussed, how negotiations work and what can go wrong during the preparations or at the negotiating table
4 th week:	5 th week:
Lecture: Types of Negotiations and Negotiating Techniques	Lecture: Bargaining and Concessions, BATNA and ZOPA
Practice: how the different types of negotiations work in, examples and practice, the different negotiating techniques discussed and practiced; role-plays	Practice: the bargaining phase of the negotiation is discussed and practiced, how to set conditions for concessions and where to give concessions, BATNA and ZOPA explained through practice
6 th week:	7 th week:
Lecture: Persuasion, suasion and assertive communication Practice: practicing the communication techniques for persuasion, suasion and assertive communication	Lecture: Types of Negotiators Practice: Types (DISC Model, Thomas- Kilman Model etc.) of negotiators and how to handle them.
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Conflicts: Definitions, Types and Perception	Lecture: The Most Common Sources of Conflicts at Workplaces
Practice: discussion of the different types of conflicts	Practice: discussion of workplace conflicts

11 th week:	12 th week:
Lecture: Dealing with Conflicts by their Types and Intensity, Conflict Resolution	Lecture: The Thomas-Kilman conflict Model Explained
techniques	Practice: discussion of the Thomas-Kilman
Practice: role-play and discussion	conflict test and its results
13 th week:	14 th week:
Lecture: Mediation, Arbitration, Litigation and Party-Directed Mediation	Lecture: Conflict Stages Modell the Escalation of conflicts, De-Escalation
Practice: role-play and discussion	Practice: conflict escalation and de- escalation examples, analysis and discussion
15 th week: 2 nd drawing week	

A, for a signature:

Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three practice classes during the semester otherwise the signature and the grade for the course will be denied. The recording of the attendance on an attendance sheet starts from the 1st week of the semester. Attendance at practice classes will be recorded by the course instructor. Being late for more than 15 minutes is equivalent with an absence. If someone has more than three absences, the International Office deals with the issue.

B, for a grade:

There will be a written test on the lecture materials at the end of the semester. The result of the written test and the in-class participation in practice classes and also the completion of the written assignment by deadline will give the final grade. Please note that if someone gets a 1 (fail) for the final test, they cannot get a grade until the test is repeated successfully. There are two possible retakes, if they both happen to be unsuccessful the student must repeat the course.

International and Management Accounting

Code: MK5NVSZM04MX17-EN ECTS Credit Points: 4 Evaluation: mid-semester grade Year, Semester: 2nd year, 1stsemester Number of teaching hours/week (lecture + practice): 2+2

Topics:

This course introduces the students into the fundamentals of managerial accounting – the internal use of accounting information to manage firms, including planning, analysis, and decision-making. The course's main objective is to equip students with the knowledge and ability to prepare, understand, evaluate, and execute financial and non-financial reports used in business organizations. Managers face several business decisions every day that require the use of financial and non-financial information about products, processes, employees, suppliers, customers, competitors, and resources. These decisions range from evaluating profitability of investment projects to managing product-line portfolios and pricing, from supply chain and customer management to evaluating and motivating employees. For this reason, utilizing relevant information (both financial and non-financial) to make efficient decisions is essential to business organizations and is an important skill for a career in corporate management, business consulting, financial services.

Literature:

Compulsory:

- Kaplan Publishing (2015): ACCA Paper F2 and FIA Diploma in Accounting and Business, Management Accounting (MA/FMA) Complete Text, Kaplan Publishing UK, ISBN: 978-1-78415-441-7
- Study materials provided by the lecturer

Recommended:

- Warren, C. Reeve, J. Duchac, J (2015): Financial & Managerial Accounting. Cengage Learning. 13th Edition. ISBN: 130548049X, 9781305480490
- Maher, M. Stickney, C. Weil, R. (2011): Managerial Accounting: An Introduction to Concepts. Methods and Uses. Cengage Learning. 11th Edition. ISBN: 1111571260, 9781111571269

Schedule

1st week Registration week

2 nd week:	3 rd week:
Lecture: The overview of financial accounting. Legal frameworks. The aim of accounting law (IFRS accounting, according to standards. The smallholder's concept. Scope of the Accounting Act. Structure of the Accounting Act. Accounting principles, Accounting obligations. Structure of account classes and their relationships with other account classes. Accounting for specific economic events. Types of accounting documents.	Lecture: The annual report (financial statement IFRS). Balance structure, relationship with account classes. Structure of the profit and loss account and its relationship with the account classes. Practice: For an existing company's financial statements. Understand the balance sheet, the financial statement, the supplementary attachment, the content of the business report.

Practice: Accounting of different business events. The content elements of the basic accounting documents of accounting and bookkeeping documents are familiar to them in the context of actual tasks.

4th week:

Lecture: The role and limits of traditional management accounting. Management accounting as the most important of constructor element controlling. Controlling definition, aims and functions within the organization. The place of management accounting in corporate of management. Structure the management accounting information system. The final product of management accounting is the management report. Responsibility principle in management accounting.

Practice: A complex task is solved by using the lessons learned so far and the topics to be studied during the semester, as well as the students to gain insight into the topics to be dealt with during the semester. Planning, control, management, information supply.

6th week:

5th week:

Lecture: Cost Consciousness. Definition of cost management. The areas of Cost Planning. Planning of costs, cost allocation, cost calculation, coverage analysis. Interpretation of capacity and cost. The operating of capacity, capacity are his maintenances. Non-controllable resources, flexible controllable resources. Substance (CAPEX) and human (HUMEX) expenditures of investment and development.

Practice:Practical questions of cost management. Practical application of coverage analysis in a numerical example. The contact of the resource and capacity through exercises.

5th week:

Lecture: Cost Accounting. The purpose of cost calculation. Definition and clarification of cost, expenditure, and expense concepts. Nature and behavior of costs. Accounting Cost, Economic Cost, Normal Cost, Economic and Accounting Profit Relationship. Costs related to continuous operation, functions costs (OPEX). The concept of explicit cost, implicit cost (accountable, non-eligible). Remittance of Costs. Analytic and ledger register of costs.

Practice: The relationship between costs, expenses and expenditures through a concrete example. The identification of costs, expenses and expenditures in the process from procurement to sales. The identification of accounting processes for major processes. Voucher order.

7th week:

Lecture: Certified andnot certified expenses. Relationship between costs and expenditures. Total Cost Procedure, expense result statement according to procedure. Expenses incurred during the period and incurring a period. Possibilities additional grouping for of costs. Accountability, volume relationship, the form of appearance. complexity. classification according to level of responsibility, controllability, and influence ability.

Practice:

Identification of certified and non-certified costs. Analysis of Total Cost and cost procedures. The structure of their information system and their peculiarities.

8th week: 1st drawing week

9th week:

Lecture: Principles of cost calculation: justiceship, emphasis direct costs; consistency; completeness; accruals, correct choice of the project funds. Time horizon of cost calculation. Structure of a possible calculation data sheet. The identification of the direct costs. Cost calculation methods, costing.

Practice: Exercising structure of a possible calculation data sheet. Identifying the elements through practical examples. Determining the value of the self-produced stocks.

11th week:

Lecture: New calculation methods. Information request of the activity-based cost calculation, and its structure. Identifying costing places. Repair option of the effectiveness of the cost allocation. Comparison the traditional and activitybased complementing method.

Practice: Practical questions of identifying costing places. Solving several examples with the activity-based cost calculation methods. Comparison the traditional and activity-based complementing method through practical examples.

13th week:

Lecture: Analysis the Balance sheet. Quick Diagnosis Indicators. Liquidity quick ratio, Stability and indebtedness indicator. Analysis status of the assets. The process of converting assets into cash. Liquidity analysis. Vertical analysis options. Vertical indicators of assets and sources. Horizontal indicators. Analysis of profit and loss statement. Categories of the profit and loss and selecting the right projection funds. Analysis of income status. Profitability indicators.

10th week:

Lecture: Divisor (simple. costing equivalent): complementing costing (global; sorter; activity-based), mixed costing: normative costing. Other traditional cost calculation methods Connection between the content of the production costs and the outcome. Positive negative stock changes.

Practice: Knowing prime cost calculation through practical examples. Equivalent, simple one stage, multistage, divisor costing examples. Complementing costing examples (global; sorter). Normative costing examples.

12th week:

Lecture: Classification of economic analysis. Grouping criteria's. Time, analytical procedure, scope, status and frequency of the production process, method and content of analysis. Balance sheet, profit and loss statement, cash flow analysis. Creating indicators. Liquidity, asset management, tax treatment, profitability. Comprehensive analysis of economic activity.

Practice:Analysis of the report of an existing economically active company based on the principles known in the lecture

14th week:

Lecture: Efficiency indicators. Yields (Net sales, gross output, value-free production, net production value, value added, and income funds). enterprise Returns indicators. ROCE (rate of return on capital employed), EPS (earnings per share), ROA (return on asset), ROE (return on equity), ROI (return on investment), ROIC (return on invested capital), EBIT (operational / business / profit), EBITDA (EBIT+ amortization). NOPLAT (Net Operating Profit Less Adjusted Taxes).

Practice: Analysis of the report of an existing economically active company based on the principles known in the lecture. Analysis the Balance sheet, and the Profit and loss statement.

Practice: Analysis of the report of an existing economically active company based on the principles known in the lecture

15th week: 2nd drawing week

Requirements

A, for a signature:

Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three occasions during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. During the semester there are two tests: the mid-term test on the 7th week and the end-term test on the 14th week. Students must sit for the tests. Solving team tasks on the exercises, prepublished themes for presentation.

B, for a grade:

The course ends in a mid-semester grade based on the average grade of the two tests.

The minimum requirement of the mid-term and the end-term test is 60% separately. The grade for each test is given according to the following (score/grade): 0-59 % = fail (1); 60-69 % = pass (2); 70-79 % = satisfactory (3); 80-89 % = good (4); 90-100 % = excellent (5). If the score of any test is below 60, the student once can take a retake test of the whole

If the score of any test is below 60, the student once can take a retake test of the whole semester material.

Leadership Competencies Development

Code: MK5KOMPM04MX17-EN ECTS Credit Points: 4 Evaluation: mid-semester grade Year, Semester: 2nd year, 2ndsemester Prerequisite: Negotiation and Conflict Management Number of teaching hours/week (lecture + practice): 2+2

Topics: Leadership Competencies Development

Literature: Miscellaneous articles, clippings and videos of the most recent literature published in the Harvard Business Review and etc.; sources available at the University Library

1st week Registration week

2 rd week: 3 rd week: Lecture: Orientation, Leadership theories, a istorical overview 1 Practice: What makes a good leader? introduction to Leadership styles and their attributes, essential competencies for leaders and the division of competencies and their attributes, drawbacks and/advantages; the examination of competencies and their grouping that are essential for leaders. Motivating colleagues and employees Practice: communication for leaders. Motivating colleagues and employees 5 th week: Lecture: Origination 5 th week: Lecture: Time Management and Team suilding 7 th week: Lecture: Time Management and Team suilding 7 th week: Practice: the importance of time traperisention vs. competition, teaming week 7 th week: Lecture: Development of leaders's and with different experience to improve their own and also but leadership actions. 7 th week: Sillaboration vs. competition, team building; complimentary vs competitive killset 10 th week: Lecture: How to build a team, empathy 10 th week Lecture: Coaching Practice: Learn how to use coaching tools in leadership	-	
Lecture: Orientation, Leadership theories, a historical overviewLecture: Leadership styles and their attributes, essential competencies for leaders and the division of competencies for actioe: the examination of the most typical leadership styles and their attributes, drawbacks and/advantages; the examination of competencies and their grouping that are essential for leaders.qth week: Lecture: Communication for leaders. Motivating colleagues and employees Practice: assertive vs. aggressive communication, stylistic differences, extrinsic and intrinsic motivation, motivation techniques and their efficiency, communication styles outside and inside their granizationSth week: Lecture: Public speaking and presenting Practice: the basics of public speaking and presenting and communicating the company and its core values outside the organization and to the employees, defining mission and articulating visiongth week: Lecture: Time Management and Team puilding Practice: the importance of time seperience to improve their own and also heir employees time management skills, ollaboration vs. competition, teiming personal goals, and values, analyse heir job and find development aims10th week: Lecture: Simplicityyth week: Lecture: How to build a team, empathy10th week Lecture: Coaching Practice: Learn how to use coaching tools in leadership	2 nd week:	3 rd week:
Practice:What makes a good leader?4th week:Practice: the examination of the most typical4th week:ecture:ecture:Communication for leaders.4th week:Sth week:ecture:Communication styles and employeesPractice:assertive vs. aggressivePractice:assertive vs. aggressivecommunication styles outside and inside thesyntinsicofferences,communication styles outside and inside thegrantice:the importance of timeanagement at work and outside work; theanagement at work and outside work; theexperience to improve their own and alsosyntildingPractice:anagement at work and outside work; theanagement at work and outside work; theanages about themselves.aph week:ecture:scatter:scatter:scatter:scatter:scatter:scatter:scatter:scatter:scatter:scatter:scatter:scatter:scatter:scatter:scatter:scatter:scatter:	Lecture: Orientation, Leadership theories, a historical overview	Lecture: Leadership styles and their attributes, essential competencies for leaders and the division of competencies
#* week:5* week:Lecture:Communication for leaders.Motivating colleagues and employeesPractice: the basics of public speaking and presentation techniques for leaders, functions of a leader as a figurehead, representing and communicating the communication styles outside and inside the organization5* week:communication styles outside and inside the organization5* week:7* week:Lecture:Time Management and Team puilding7* duce:the importance of time most popular techniques aiding managers at different levels and with different experience to improve their own and also their employees time management skills, collaboration vs. competition, team puilding; complimentary vs competitive3* week:1* drawing week2* drawing week10* week: Lecture: Simplicity2* meter:Success in the world of work Practice:1* weekLecture: Coaching processes. Make a flow chart, check the unnecessary processes and create a new one to realize the process of simplicity1* weekLecture: Coaching Practice: Learn how to use coaching tools in leadership	Practice: What makes a good leader? Introduction to Leadership styles and to their evolution.	Practice: the examination of the most typical leadership styles and their attributes, drawbacks and/advantages; the examination of competencies and their grouping that are essential for leaders.
Lecture: Communication for leaders. Motivating colleagues and employeesLecture: Public speaking and presenting Practice: the basics of public speaking and presentation techniques for leaders, functions of a leader as a figurehead, representing and communicating the organization styles outside and inside the 	4 th week:	5 th week:
Practice:assertivevs.aggressivecommunication,stylisticdifferences,cextrinsicandintrinsicmotivation;motivation techniques and their efficiency,company and its core values outside thecommunication styles outside and inside theorganization and to the employees, definingprimek:motivation;ecture:Time Management and Teamprimek:Lecture:ecture:Time Management and Teamprimek:Lecture:primek:Lecture:ecture:the importance of timenanagement at work and outside work; thenost popular techniques aiding managers atdifferentlevelsexperience to improve their own and alsocheir employees time management skills,collaboration vs.competitiveskillset3 th week:ecture:Success in the world of workPractice:Anake their own job description,defining personal goals, and values, analyseheir job and find development aimsl11 th weekecture:Heir How to build a team, empathyL1 th weekecture:Lecture:L1 th weekecture:How to build a team, empathy	Lecture: Communication for leaders. Motivating colleagues and employees	Lecture: Public speaking and presenting Practice: the basics of public speaking and
5 th week:7 th week:Lecture: Time Management and Team buildingLecture: Development of leadership Practice: Analyse the leaders' leadership style, which are mentioned in the presentation. SWOT analyse and Johari window to collect the features of the students. Personal test to help to make the 	Practice: assertive vs. aggressive communication, stylistic differences, extrinsic and intrinsic motivation; motivation techniques and their efficiency, communication styles outside and inside the organization	presentation techniques for leaders, functions of a leader as a figurehead, representing and communicating the company and its core values outside the organization and to the employees, defining mission and articulating vision
Lecture: Time Management and Team buildingLecture: Development of leadership Practice: Analyse the leaders' leadership style, which are mentioned in the presentation. SWOT analyse and Johari window to collect the features of the students. Personal test to help to make the analyses about themselves. Ted videos about leadership actions.3th week: 1st drawing week10th week: Lecture: Success in the world of work Practice: Make their own job description, defining personal goals, and values, analyse their job and find development aims10th week Lecture: Simplicity11th week Lecture: How to build a team, empathy12th week Lecture: Coaching Practice: Learn how to use coaching tools in leadership	6 th week:	7 th week:
Practice:theimportanceoftimemanagement at work and outside work; the most popular techniques aiding managers at differentstyle, which are mentioned in the presentation. SWOT analyse and Johari window to collect the features of the students. Personal test to help to make the analyses about themselves. Ted videos about leadership actions.gth week:10th week:geture:Success in the world of workPractice:Make their own job description, defining personal goals, and values, analyse their job and find development aims11th week .ecture:How to build a team, empathy12th week .ecture:Lecture: Coaching Practice: Learn how to use coaching tools in leadership	Lecture: Time Management and Team building	Lecture: Development of leadership Practice: Analyse the leaders' leadership
B th week: 1 st drawing week10 th week:D th week:10 th week:Lecture: Success in the world of workLecture: SimplicityPractice: Make their own job description, defining personal goals, and values, analyse their job and find development aimsPractice: Analyse companies' general processes. Make a flow chart, check the 	Practice: the importance of time management at work and outside work; the most popular techniques aiding managers at different levels and with different experience to improve their own and also their employees time management skills, collaboration vs. competition, team building; complimentary vs competitive skillset	style, which are mentioned in the presentation. SWOT analyse and Johari window to collect the features of the students. Personal test to help to make the analyses about themselves. Ted videos about leadership actions.
Pathweek:10th week:Lecture: Success in the world of workLecture: SimplicityPractice: Make their own job description, defining personal goals, and values, analyse their job and find development aimsPractice: Analyse companies' general processes. Make a flow chart, check the unnecessary processes and create a new one to realize the process of simplicityL1th week Lecture: How to build a team, empathyLecture: Coaching Practice: Learn how to use coaching tools in leadership	8 th week: 1 st drawing week	
Lecture: Success in the world of workLecture: SimplicityPractice: Make their own job description, defining personal goals, and values, analyse their job and find development aimsPractice: Analyse companies' general processes. Make a flow chart, check the unnecessary processes and create a new one to realize the process of simplicityL1th week12th weekLecture: How to build a team, empathyLecture: Coaching Practice: Learn how to use coaching tools in leadership	9 th week:	10 th week:
Practice:Make their own job description, defining personal goals, and values, analyse cheir job and find development aimsPractice:Analyse companies' general processes. Make a flow chart, check the unnecessary processes and create a new one to realize the process of simplicityL1th week .ecture:12th week Lecture:Coaching Practice:Lecture:Lecture:Coaching Practice:Practice:Learn how to use coaching tools in leadership	Lecture: Success in the world of work	Lecture: Simplicity
11th week 12th week Lecture: How to build a team, empathy Lecture: Coaching Practice: Learn how to use coaching tools in leadership	Practice: Make their own job description, defining personal goals, and values, analyse their job and find development aims	Practice: Analyse companies' general processes. Make a flow chart, check the unnecessary processes and create a new one to realize the process of simplicity
Lecture: How to build a team, empathy Practice: Learn how to use coaching tools in leadership	11 th week	12 th week
Practice: Learn how to use coaching tools in leadership	Lecture: How to build a team, empathy	Lecture: Coaching
		Practice: Learn how to use coaching tools in leadership

Practice: Analyse a leader's behavior and discuss different methods. Training to check and develop the students EQ

Requirements

A, for a signature:

Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three practice classes during the semester otherwise the signature and the grade for the course will be denied. The recording of the attendance on an attendance sheet starts from the 1st week of the semester. Attendance at practice classes will be recorded by the course instructor. Being late for more than 15 minutes is equivalent with an absence. If someone has more than three absences, the International Office deals with the issue.

B, for a grade:

The end of the semester test on the lecture material and in-class participation will give the final grade. If someone gets a 1 (fail) at the final test, there are two possible retakes. If both retakes happen to be unsuccessful the student must repeat the course.

Applied Engineering

Code: MK5ALKRM04MX17-EN ECTS Credit Points: 4 Evaluation: mid-semester grade Year, Semester: 1st year, 2nd semester Number of teaching hours/week (lecture + practice): 1+2

Topics:

The aim of the course is to introduce the students to the basics of Operations Research. During the semester, students are going to learn the basic models and methods which are related to the field of engineering management. Furthermore, students can analyse the results of the optimal solution which is indispensable part of this field. The following topics are covered in the Applied Engineering subject:

- Modelling real-life business situations (identification of objective, constraints, etc...)
- Acquiring the use of MS Excel's Solver Plugin
- Determination of optimal production structure
- Transportation and transhipment problem solving
- Assignment
- Networks
 - o Networks in production and transportation
 - Project management (Critical Path Method, Project Evaluation and Review Technique, Project Crashing)

Literature:

Compulsory:

- Cliff T. Ragsdale: *Spreadsheet Modeling & Decision Analysis*, 8th edition, 2017, ISBN: 9781305947412
- Wayne L. Winston: *Operations research: Applications and Algorithm*, 4th Edition, Brook/Cole, Canada, 2004, ISBN: 978-0534380588
- George B. Dantzig: Linear Programming and Extensions, Princeton University Press, 1998, ISBN: 978-0691059136

Schedule

 1st week Registration week

 2nd week:

 Lecture: Basics of decision making

 Lecture: Graphical solution

Practice: Process of decision making	Practice: Computer related practice – graphical solution of two-variable problems
4 th week:	5 th week:
Lecture: Simplex method Practice: Simplex method	Lecture: Design of an operations research model by using MS Excel
	Practice: Computer related practice – Model design of two-variable problems.
6 th week:	7 th week:
Lecture: Sensitivity analysis	Lecture: Duality
Practice: Computer related practice – Optimal production structure problems	Practice: Computer related practice – Optimal production structure problems
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Financial problems	Lecture: Assignment method
Practice: Computer related practice – Capital Budgeting and Portfolio models	Practice: Computer related practice – Work assignment, Optimal changeover sequence
11 th week:	12 th week:
Lecture: Transportation and transshipment problems Practice: Computer related practice – Transportation and transshipment methods	Lecture: Networks in the production Practice: Computer related practice – Generalized network flow problem
13 th week:	14 th week:
Lecture: Project management	Lecture: Revision
Practice: Computer related practice – CPM, PERT and Project Crashing	Practice: Computer related practice – Solving complex tasks
15 th week: 2 nd drawing week	

A, for a signature:

Participation at practices is compulsory. Students must attend practices and may not miss more than three of them during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at lectures and practices will be recorded by the lecturer. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed lectures must be made up for at a later date, being discussed with the tutor.

B, for a grade:

The course ends in end-term test. The grade for the test is given according to the following table:

Score	Grade
0-59	fail (1)
60-69	pass (2)
70-79	satisfactory (3)
80-89	good (4)
90-100	excellent (5)

C, Etiquette:

A large portion of class time is spent sharing opinions and sharing information. Therefore, it is of utmost importance to communicate with courtesy and professionalism. Professional courtesy includes respecting others' opinions, being courteous and respectful, and working together in the spirit of cooperation. Discussions and assignments will be graded on quality and professionalism. Please refrain from using cell phones or other disruptive electronic devices while attending class, and please silence all sounds made by such devices while class is in session.

D, Use of English:

In accordance with Faculty Policy, students may be penalized up to 10% of the marks on all assignments, tests, and examinations for the improper use of English.

Advanced Quality Management

Code: MK5HMINM04MX17-EN ECTS Credit Points: 4 Evaluation: mid-semester grade Year, Semester: 1st year, 2ndsemester Number of teaching hours/week (lecture + practice): 2+2

Topics:

The subject contains the advanced concepts of quality management. The aim of the course is students become familiar with the elements, installation, operation and tools of integrated management system. During the subject students can be familiar with seven new methods and quality improvement methods.

Literature:

Compulsory:

- Kim-Soon Ng (2012): Quality Management and Practices. InTech, Chapters published. ISBN 978-953-51-0550-3
- David L. Goetsch, Stanley Davis: Quality management: introduction to total quality management for production, Pearson Prentice Hall, 2013, ISBN 0-13-287097-5, 978-0-13-287097-9
- B. G. Dale: Managing Quality, Wiley-Blackwell, 2007, ISBN 978-1-4051-4279-3

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: ISO 9001 standard elements and structure, PDCA, Interested parties	Lecture: Benefits of QMS, Customer Focus, Seven principals
Practice: Analyze examples for the ISO 9001	Practice: Analyze examples for the ISO 9001
4 th week:	5 th week:
Lecture: Scope of Quality management system, quality objectives	Lecture: Risk management requirements in QMS,
Practice: Analyze examples for the ISO 9001, Audit situations	Practice: Analyze examples for the ISO 9001, Audit situations
6 th week:	7 th week:
Lecture: ISO 14001, elements and structure, PDCA, Environmental objectives	Lecture: Environmental aspects and impacts, environmental risks
Practice: Analyze examples for the ISO 14001	Practice: Analyze examples for the ISO 14001
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Affinity diagrams, charts the relationship between each other, Wood chart, graph matrix Practice: Analyze examples for the methods	Lecture: Matrix data analysis, decision- making process card program analyst Practice: Analyze examples for the methods
11 th week:	12 th week:
Lecture: Arrow diagrams, Gantt diagram Practice: Analyze examples for the methods	Lecture: Brainstorming, action plan, block diagram, SWOT, FMEA, QFD, why-why, Poka-Yoke, NGT, Multivoting, Logframe matrix
	Practice: Analyze examples for the methods,

13 th week:	14 th week:
Lecture: Definition of TQM, model of TQM,	Lecture: Quality and lean in the
Principles of TQM	manufacturing, Methodologies, effects,
Practice: Case studies	tools
	Practice: Case studies

15th week: 2nd drawing week

Requirements

A, for a signature:

Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three practice classes during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students can't take part in any practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed practice classes must be made up for at a later date, being discussed with the tutor.

During the semester there are two tests: the mid-term test is on the 8th week and the end-term test is on the 15th week. Students must sit for the tests.

B, for a grade:

The course ends in a mid-semester grade based on the average grade of the two tests.

The minimum requirement of the mid-term and the end-term test is 60% separately. The grade for each test is given according to the following (score/grade): 0-59 % = fail (1); 60-69 % = pass (2); 70-79 % = satisfactory (3); 80-89 % = good (4); 90-100 % = excellent (5). If the score of any test is below 60, the student once can take a retake test of the whole semester material.

Operation Management

Code: MK5HTEV204MX17-EN ECTS Credit Points: 4 Evaluation: exam Year, Semester: 2ndyear, 1stsemester Prerequisite: Applied Mathematics in Manufacturing Design Number of teaching hours/week (lecture + practice): 2+2

Topics:

The course focuses on the advanced aspects of the production and service management. The goal of the course to summary the advanced engineering technique. Emphasis is placed on the practical implementation of recommendations generated from the advanced modelling and system's understanding gained in the full range of Industrial engineering. The primary goal of the course is to allow students to see the applications of theories in a more realistic and intricate setting to gain a broader view of production and service management.

Literature:

Compulsory:

- Arnold, J. R. Tony; Chapman, Stephen N.; Clive, Lloyd M.: Introduction to Materials Management, Pearson New International Edition Pearson Education 2013
- Ashok D. Belegundu, Tirupathi R. Chandrupatla: Optimization Concepts and Applications in Engineering, (2nd ed.) Cambridge University Press 2011
- William Stevenson: Operations Management (11th ed.) McGraw-Hill 2011

Recommended:

- Hirano, Hiroyuki: JIT Implementation Manual The Complete Guide to Just-In-Time Manufacturing: Volume 3 - Flow Manufacturing - Multi-Process Operations and Kanban Taylor & Francis, 2009
- Baudin, Michel: Working with Machines: The Nuts and Bolts of Lean Operations with Jidoka Taylor & Francis 2007

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Introduction to operation management	Lecture: Building of Process Management System
Practice: Examples, case studies	Practice: Examples, case studies
4 th week:	5 th week:
Lecture: Production Planning, create Value flow	Lecture: Production control, SPC
Practice: Examples, case studies	Practice: Examples, case studies
6 th week:	7 th week:
Lecture: Inventory Planning Deterministic Models EOQ models	Lecture: Inventory control: MRP I-II, ERP
Lecture: Inventory Planning Deterministic Models EOQ models Practice: Examples, case studies	Lecture: Inventory control: MRP I-II, ERP Practice: Examples, case studies
Lecture: Inventory Planning Deterministic Models EOQ models Practice: Examples, case studies 8 th week: 1 st drawing week	Lecture: Inventory control: MRP I-II, ERP Practice: Examples, case studies
Lecture: Inventory Planning Deterministic Models EOQ models Practice: Examples, case studies 8 th week: 1 st drawing week 9 th week:	Lecture: Inventory control: MRP I-II, ERP Practice: Examples, case studies 10 th week:
Lecture: Inventory Planning Deterministic Models EOQ models Practice: Examples, case studies 8 th week: 1 st drawing week 9 th week: Lecture: JIT comparison of push and pull systems, MTO-MTS dilemma	Lecture: Inventory control: MRP I-II, ERP Practice: Examples, case studies 10 th week: Lecture: OEE – overall equipment efficiency, Capacity analyzing

11 th week:	12 th week:
Lecture: Production process modeling:	Lecture: Service pool line model
eEPC –VSM	Practice: Examples, case studies
Practice: Examples, case studies	
13 th week:	14 th week:
Lecture: Service quality level improving	Lecture: Service and production
Practice: Examples, case studies	development (Six sigma)
	Practice: Examples, case studies
15 th week: 2 nd drawing week	

A, for a signature:

Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three practice classes during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students can't take part in any practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed practice classes must be made up for at a later date, being discussed with the tutor.

During the semester there are two tests: the mid-term test is on the 8th week and the end-term test is on the 14th week. Students must sit for the tests. The minimum requirement of the mid-term and the end-term test is 60% separately. If the score of any test is below 60%, the student once can take a retake test of the whole semester material. If somebody fails then he/she has to write both tests in the 1st week of the exam period again. If the result is 60 % or better the retake test is success.

B, for a grade:

The course ends in an examination.

The grade is given according to the following (score/grade): 0-59 % = fail (1); 60-69 % = pass (2); 70-79 % = satisfactory (3); 80-89 % = good (4); 90-100 % = excellent (5).

Project Leadership

Code: MK5PROVM04MX17-EN ECTS Credit Points: 4 Evaluation: mid-semester grade Year, Semester: 2nd year, 1stsemester Number of teaching hours/week (lecture + Seminar): 2+2

Topics:

Project management involves both leading people and managing resources to achieve the intended project outcome. Leadership is often the difference between project success and failure. The objective of this course is to equip students with the concepts, tools and techniques for effective leadership within a project context. Within this context, the course primarily focuses on understanding project management, aligning project management with the organization, project management oversight, projects as capital investments, globalization and resources optimization.

Literature:

Compulsory:

- Pinto K. Jeffrey: Project Management: Achieving Competitive Advantage (Rental Edition), 5/E, 2019
- Madsen, S.: Project Leadership, Routledge, 2016
- Coleman, S.; Macnicol D.: Project Leadership, Gower Publishing, 2015

Recommended:

- Lewis, P.J.: Project Leadership. McGraw-Hill, 2003
- Lord G.R., Maher J. K.: Leadership Information Processing. Linking Perceptions and Performance. Routledge, 1993
- Project Management Institute: PMBOK Guide and Standards. 6th edition

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Introduction, The Organizational Context	Lecture: Project Selection and Portfolio Management
Seminar: Case study, MS Project Software, WBS	Seminar: Case study, MS Project Software, Task durations
4 th week:	5 th week:
Lecture: Leadership vs. Management	Lecture: Project Leadership
Seminar: Case study, MS Project Software, Predecessors	Seminar: Case study, MS Project Software, Gantt
6 th week:	7 th week:
Lecture: Scope Management	Lecture: Project Team, Negotiation
Seminar: Case study, MS Project Software, Resources	Seminar: Case study, MS Project Software, Overallocations
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Risk Management	Lecture: Cost Estimation and Budgeting

Seminar: Case study, MS Project Software, Costs	Seminar: Case study, MS Project Software, Baseline
11 th week:	12 th week:
Lecture: Lagging, Crashing and Activity	Lecture: Agile and Critical Chain
Networks	Seminar: Case study, MS Project Software,
Seminar: Case study, MS Project Software, report dashboard	report resources
13 th week:	14 th week:
Lecture: Resource Management	Lecture: Project Evaluation
Seminar: Case study, MS Project Software, report costs	Seminar: Case study, MS Project Software, Report critical tasks
15 th week ^{2nd} drawing week	

A, for signature:

- active, proactive participation on course
- participation in seminars is mandatory. We also expect all students to be present during the lectures.

B, for a grade:

The calculation of the final grade is as follows:

- Exam 50%
- Own project (Excel, Microsoft Project) 50%
- +Individual assignment on lectures 5 %

Risk and Reliability

Code: MK5KOCKM04MX17-EN ECTS Credit Points: 4 Evaluation: exam Year, Semester: 1st year, 1stsemester Number of teaching hours/week (lecture + practice): 2+2

Topics:

Fundamentals of risk, uncertainty, and reliability. Methods to analyse and quantify the risk of failures, and the reliability of complex systems, including fault tree analysis, reliability block diagrams, probabilistic risk assessment. Introduction to research methods for risk and reliability analysis during the early design stages.
Literature:

Compulsory:

- Mohammad Modarres: Risk Analysis in Engineering: Techniques, Tools and Trends, Taylor & Francis (2006).
- Terje Aven: Quantitative risk assessment: the scientific platform Cambridge, UK; New York: Cambridge University Press, 2011.

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Basic concepts and definitions: Risk vs. Reliability, Hazards, Failures,	Lecture: Traditional design; Safety Factors; Probabilistic Design
Uncertainty sources Practice: Selection of research project topic	Practice: Safety fastor Measures and reliability block diagram
4 th week:	5 th week:
Lecture: Reliability engineering; Reliability measures; Reliability block diagrams Practice: Reliability block diagrams	Lecture: Failure: definitions and modelling (HW vs SW failures; component vs system-level failures)
	Practice: Select system, list failures & provide example of a failure or reliability
6 th week:	7 th week:
Lecture: Failure modes and effects analysis (FMEA), Criticality analysis (CA)	Lecture: Fault Tree Analysis (FTA), Event Tree Analysis (ETA)
Practice: Generate FMECA for selected system	Practice: Generate FTA for selected system and compare to FMECA results
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Probabilistic Risk Assessment (PRA) Practice: Generate ETA for selected system	Lecture: Risk considerations in early design stages
and compare to FMECA result	Practice: Analyses of design states
11 th week:	12 th week:
Lecture: Failure analysis during functional design (FFDM) Design repository	Lecture: Functional failure identification and propagation (FFIP)
Practice: Use of design repository for selected system	Practice: Generate FFIP for selected system
13 th week:	14 th week:
Lecture: Cost-benefit analysis (CBA) Practice: Cost-benefit analysis (CBA)	Lecture: Hazard identification methods , Process hazards checklists , Hazards surveys

and analysis Hazard and operability in industry

Practice: Course summary

15th week: 2nd drawing week

Requirements

A, for a signature:

Participation at lectures is compulsory. Students must attend lectures and may not miss more than three of them during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at lectures will be recorded by the lecturer. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed lectures must be made up for at a later date, being discussed with the tutor.

The minimum requirement of the mid-term and the end-term test is 60% separately. The first (50 points max) in the 8th, the second (50 points max) in the 14th week. At the end of the semester everybody will get a seminar grade on the basis of the table below: The grade for each test is given according to the following (score/grade): 0-59 % = fail (1); 60-69 % = pass (2); 70-79 % = satisfactory (3); 80-89 % = good (4); 90-100 % = excellent (5).

If the score of any test is below 60 point, the student once can take a retake test of the whole semester material. If somebody fails then he/she has to write both tests in the 1st week of the exam period again. If the result is 50 points (50%) or better, then he can take an exam. If somebody has to repeat his midterm tests then his seminar grade can't be better than (2).

B, for a grade:

For their exam everybody will get an exam grade. The final grade will be the average of the seminar and the exam grade. If it is for example (3.5) then the lecturer decides if it is (3) or (4).

Control of Integrated Information System

Code: MK5INFRM04MX17-EN ECTS Credit Points: 4 Evaluation: exam Year, Semester: 1st year, 2nd semester Number of teaching hours/week (lecture + practice): 1+3

Topics:

This course aims to explain the main characteristics of Enterprise Resource Planning systems (ERPs) theoretically and also introduces how to navigate in SAP Easy Access Menu in practice. The illustration of SAP R/3 systems is aimed the students at universities of applied sciences and other learning institutions with no previous experience. After

completion of the course, students will be able to understand the major reasons to adopt ERP systems and navigate through the SAP User Interface to work on business processes and case studies on their own. Furthermore, this material serves as a reference for occasional users of SAP R/3 systems

The Course contains the following elements: the Sap Ides and R/3 systems main features and functions of user interface. This course also guides the end-users through different processes of Logistical Information System (LIS), such as Material Management, Sales and Distribution, etc. As one of the most important and implemented finance, accounting, controlling functionalities, the SAP makes information more manageable and accessible.

Literature:

Compulsory:

- Mazzulo, J. Wheatley, P. (2006): SAP R/3 for Everyone: Step-by-Step Instructions, Practical Advice, and Other Tips and Tricks for Working with SAP, Prentice Hall, ISBN-13: 978-0131860858
- Schulz. O. (2017): Using SAP: An Introduction for Beginners and Business Users, SAP Press, ISBN 978-1-4932-1405-1.

Recommended:

- Anderson, G. (2011): Teach Yourself SAP in 24 Hours, Fourth Edition, Sams publisher. ISBN-13: 978-0672335426
- Narayanan, V. (2006): SAP R/3 FI Transactions. SAP R/3 FI Transactions.
- Nicholas G. Carr (2003): Does IT matter? Harvard Business Review.

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Determining the requirements of the course	Lecture: The history of SAP AG, SAP Business Processes
Practice: Introduction to the ERP Systems	Practice: SAP R/3 Systems main features and functions of the User Interface, Navigation in the Menu
4 th week:	5 th week:
Lecture: Integration of ERP systems	Lecture: Modules of SAP
Practice: Creating documents and sending in the Business Workplace, Calendar Function	Practice: Distribution Lists
6 th week:	7 th week:
Lecture: Global Bike Industries (GBI)	Lecture: GBI and logistics
Practice: Creating Reports and Jobs	Practice: Midterm A
8 th week: 1 st drawing week	

9 th week: Lecture: Inquires, Quotation	10 th week: Lecture: Sales and Distribution in GBI
11 th week: Lecture: Financial Accounting in GBI	12 th week: Lecture: Material Management in GBI
Practice: Master Data, Financial Statements, Posting etc.	Practice: Requisition, Vendor Selection, Purchase Order, Vendor shipment, Goods and Invoice Receipt, Payment to vendor
13 th week:	14 th week:
Lecture: Product Planning and Execution in SAP	Midterm B
Practice: Proposal, Planning, Schedule and Release, Good issue and receipt, Order settlement	
15 th week: 2 nd drawing week	

A, for a signature:

Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three occasions during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students can't take part in any practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence.

During the semester there are two mid-term tests (50-50%).

B, for a grade:

The course ends in an examination.

The grade is given according to the following (score/grade): 0-49 % = fail (1); 50-62 % = pass (2); 63-75 % = satisfactory (3); 76-89 % = good (4); 90-100 % = excellent (5).

If the final score is below 50 per cent, the student once can take a retake test of the whole semester material as regulated by the Statutes of Examination and Teaching. Personal attendance is required.

MSc Thesis I.

Code: MK5DIP1M15MX21-EN ECTS Credit Points: 15 Evaluation: mid-semester grade Year, Semester: 2nd year, 1stsemester Number of teaching hours/week (lecture + practice): 0+3

Topics:

This course is an overview of writing and organizational skills necessary for completion of thesis and submission of articles for publication. Thesis I. course is designed to help MSc students undertaking a literature research related to the field of Engineering Management. At the completion of this course students should be able to:

Formulate key questions for a review

Organize a literature search; identify, analyse, evaluate relevant sources.

Create evidence tables and summary tables

Rate the scientific quality of each study and the level of evidence for each question.

Literature:

Compulsory:

- Student Success: A Guide to APA 6th ed. Referencing Style
- Cochrane Handbook for Systematic Reviews of Interventions, Chapter 6: Searching for studies.

1 st week Registration week	
2 nd week:	3 rd week:
Practice: Introduction of literature research	Practice: Structure of Literature review, steps and requirements of literature review and thesis.
4 th week:	5 th week:
Practice: Find a subject and supervisor, read the key articles, make a literature research plan.	Practice: APA format references, TEST on e- learning system.
6 th week:	7 th week:
Practice: Using refworks, and Cite and Side	Practice: Data clearing in excel
8 th week: 1 st drawing week	
9 th week:	10 th week:
Practice: Data analysis and visualization.	Practice: Survey evaluation in excel and Analysis toolpak
11 th week:	12 th week:
Practice: Structure of presentation	Practice: Presentation of literature review
13 th week:	14 th week:
Practice: Presentation of literature review	Practice: Presentation of literature review

15th week: 2nd drawing week

Requirements

Participation at practices is compulsory. Students must attend practices and may not miss more than three of them during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at lectures and practices will be recorded by the lecturer. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed lectures must be made up for at a later date, being discussed with the tutor. At least 80% has to be reached on reference test for signature.

B, for a grade:

The course ends with a literature review submission. Every student has to submit a literature review in field of engineering management. The content of literature review has to meet with the requirements. The literature review will be graded on the following way: Critical thinking, Coherence/Organization, References, Mechanics.

MSc Thesis II

Code: MK5DIP2M15MX21-EN ECTS Credit Points: 15 Evaluation: mid-semester grade Year, Semester: 2nd year, 2nd semester Number of teaching hours/week (lecture + practice): 0+7 Prereguisite: MSc Thesis I

Based on the literature review performed during the Thesis 1. course, the practical part of the MSc thesis has to be carried out under the supervision of the chosen Professor/Teacher. Furthermore, preparation for the final defence (Binding the thesis and creating the PPT presentation) should be made 1 week before the deadline of the thesis submission. In this semester, students have to consult at least once per week with his/her supervisor to present the progress of his/her practical part.

Formal thesis requirements can be found at the Faculty's website: https://eng.unideb.hu/en/node/288

Subject group "Differentiated Field-Specific Subjects" for Construction Industry specialization

Building Energetics II

Code: MK5EEN2L04M321-EN ECTS Credit Points: 4 Evaluation: exam Year, Semester: 1st year, 2ndsemester Number of teaching hours/week (lecture + practice): 1+3

Topics:

The relations between the energy, the economy, the society and the environment. The basic definitions of the energy management, the systems of the energy supply and the different kinds of converters. Heat transfer processes. Thermal balance of a building. Degree-day method. The nearly zero energy buildings. Renewable energy technologies for energy efficient buildings. The importance of the building energetics. Ventilation primer energy use calculation methods. Cooling primer energy use calculation methods. Renewable energy technologies for energy efficient buildings. Improving the energy efficiency of the building and possibilities of reducing the energy need and energy use of the building. Energy performance certification.

Literature:

Compulsory:

- Al-Shemmeri, T. Energy Audits, Willey-Blackwell, 2011.
- EPBD recast (http://eur-lex.europa.eu)
- Richarz, C. and Schulz, C. Energy efficiency refurbishments, FSC, 2013.

Recommended:

- Hodge, B. Alternative Energy Systems and Applications, Wiley, 2009.
- Kalmár, F. Energy concious heating, Akadémia Kiadó, 2011.
- Moss, J. K. Energy Management in Buildings, Taylor & Francis, 2006.
- Moss, J. K. Heat and Mass Transfer in Buildings, 2nd edition, Taylor & Francis, 2007.
- Littler, J. and Thomas, R. Design with energy The conservation and use of energy in buildings, Cambridge University Press, 2003.

• J.K. Nayak , J.A. Prajapati, Handbook on energy conscious buildings, 2006

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: The relations between the	Lecture: Heat transfer processes.
energy, the economy, the society and the environment. The basic definitions of the energy management, the systems of the energy supply and the different kinds of converters.	Practice: Basic heat transfer calculations.
Practice: Basic examples of calculation.	
4 th week:	5 th week:
Lecture: Thermal balance of a building.	Lecture: Degree-day method
Practice: Basic heat transfer calculations.	Practice: Basic examples of calculation
6 th week:	7 th week:
Lecture: The nearly zero energy buildings.	Lecture: Renewable energy technologies
Practice: Basic examples of calculation	for energy efficient buildings.
	Practice: Examples of calculation
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: The importance of the building energetics.	Lecture: Ventilation primer energy use calculation methods.
Practice: Basic examples of calculation	Practice: Basic examples of calculation
11 th week:	12 th week:
Lecture: Cooling primer energy use calculation methods.	Lecture: Renewable energy technologies for energy efficient buildings.
Practice: Basic examples of calculation	Practice: Basic examples of calculation
13 th week:	14 th week:
Lecture: Improving the energy efficiency of the building and possibilities of reducing the energy need and energy use	Lecture: Energy performance certification.
of the building.	

Practice: Basic examples of calculation

15th week: 2nd drawing week

Requirements

A, for a signature:

Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three practice classes during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students can't take part in any practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed practice classes must be made up for at a later date, being discussed with the tutor.

B, for a grade:

During the semester there are two tests: the mid-term test is on the 7th week and the end-term test is on the 14th week. The minimum requirement of the mid-term and the end-term test is 51% separately. If the score for any of the tests is below 51 points, the student can take a retake test of the whole semesters material. Students must sit for the tests. The grade for each test is given according to the following: score/grade: 0-50 fail (1), 51-60 pass (2), 61-75 satisfactory (3), 76-89 good (4), 90-100 excellent (5). The average grade of the two tests represents the final grade.

Organization of Construction Processes in BIM Environment

Code: MK5EPE2M04M321-EN ECTS Credit Points: 4 Evaluation: exam Year, Semester: 1st year, 2ndsemester Number of teaching hours/week (lecture + practice): 2+2

Topics:

Students will gain an overview of construction processes and the organization of construction processes in a BIM environment.

During the lectures, students get acquainted with the division of construction processes, including the concepts of contract and commissioning, preparation, design, implementation, commissioning and operation of the structure, and the concepts of quality and quality assurance. After reviewing the classical approach to construction organization, students begin to master the basics of building information modelling and management (BIM).

In the lectures, students will learn the basics of the BIM approach, the history of BIM, the actors in BIM processes, and the basic concepts and definitions related to BIM. The course introduces the application possibilities of BIM. To do this, students will be introduced to international case studies.

The exercises is task-oriented: students become acquainted with the CAD-based programs that are used to design structures and to prepare for the organization of the implementation of the structure.

Students deepen their expertise and develop their skills by processing the knowledge they have acquired in the subject topics during the internships and the individual processing of the curriculum at home.

Literature:

Compulsory:

- Sacks, R. Eastmen, Ch. Lee, G. Teicholz, P.: BIM Handbook. A Guide to Building Information Modeling for Owners, Designers, Engineers, Contractors, and Facility Managers. Third Edition. John Wiley & Sons, Inc. Hoboken, Ney Jersey, 2018.
- Holzer, D.: The BIM Managers Handbook Guidance for Professionals in Architecture, Engineering, and Construction. John Wiley & Sons, Inc. Chichester, West Sussex, 2016.

Recommended:

- Hardin, B. McCool, D.: BIM and Construction Management. Proven Tools, Methods, and Workflows. Second Edition. John Wiley & Sons, Inc. Indianapolis, Indiana, 2015.
- Daniotti, B. Pavan, A. Spagnolo, S.L. Caffi, V. Pasini, D. Mirarchi, C.: BIM-Based Collaborative Building Process Management. Springer Nature Switzerland AG 2020.

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Organization of the	Lecture: The contract. Transfer to the
implementation: process segmentation,	company
actors, building processes as one builds on	Practice: Mapping and geotechnical
the other process	design program
Practice: Architect and static designer	
program	
4 th week:	5 th week:

 Lecture: Preparation and planning Practice: Civil engineer and building electrical design program 6th week: Lecture: Commissioning and operation Practice: A workflow planning and scheduling program 	Lecture:Implementation (creation, construction)Practice:Budget program7 th week:Implementation (creation, construction)Lecture:Quality and quality assurancePractice:First test (or submission of first case study)
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: BIM basics (basic concepts, definitions); Information content of BIM models Practice: Revit (BIM software architecture, structural design, building engineering, building electricity in one package	Lecture: BIM in design, execution, roles Practice: Revit
11 th week:	12 th week:
Lecture: BIM collaboration	Lecture: BIM in operation
Practice: Revit	Practice: Navisworks Manage (project management and implementation support program)
13 th week:	14 th week:
Lecture: BIM-based analyses	Lecture: BIM-based simulations
Practice: Navisworks Manage (project management and implementation support program)	Practice: Second test (or submission of second case study)
15 th week: 2 nd drawing week	

A, for a signature: Two positive tests, or two positive semester tasks

B, for a grade: Two positive tests or two positive semester tasks (50 %) and oral and written exam (50%)

Complex Project

Codes: MK5KOMPM04M317-EN ECTS Credit Points: 4 Evaluation: mid-semester grade Year, Semester: 1st year, 2ndsemester Number of teaching hours/week (lecture + practice): 0+4

Topics:

In particular, the course will be focused on the student's ability development to manage complex exercises and implement technical, economic, financial and management tasks so that students are able to make comprehensive, comparative and scientific analysis. The course is highly interactive with challenging complex problem solving, team work, individual presentation and case studies.

Literature:

Compulsory:

- Hevner et al., Design Science in IS Research, MIS Quarterly Vol. 28 No. 1, pp. 75-105/ March 2004
- Ken Peffers et al., A design Science Research Methodology for Information Systems Research, Journal of Management Information Systems, August 2007, Vol. 24, No. 3, pp. 45-77
- Research Methods for Operations Management: Edition 2, by Christer Karlsson
- Abdul Razzak Rumane (2010) Quality Management in Constructions Projects, CRC Press

1 st week Registration week	
2 nd week:	3 rd week:
Practice: Introduction to Complex Project. Domestic points and goals of Complex Project. Research as a problem solving process. Examples for it.	Practice: Project Log-frame. Design the requirements of project with log-frame.
4 th week:	5 th week:
Practice: Databases for literature study. Search engines and library databases	Practice: Perform literature study. Finding books. Finding journal articles. Selecting keywords
6 th week:	7 th week:
Practice: Define a research question	

	Practice: Research Design – meta process, Conceptualization, Operationalization, and Measurement
8 th week: 1 st drawing week	
9 th week:	10 th week:
Practice: Structures of artefact. Artefact is built.	Practice: Data collecting methods, Data processing methods, Data analysis.
11 th week:	12 th week:
Practice: Data collecting methods, Data processing methods, Data analysis	Practice: Data collecting methods, Data processing methods, Data analysis
13 th week:	14 th week:
Practice: Report creation out of the project. Wrap up of Complex Project.	Practice: Evaluation of submitted research paper

 15^{th} week: 2^{nd} drawing week Research paper presentations (Presentation of Complex project and discussion)

Requirements

A, for a signature:

Participation at practice is compulsory. Students must attend practices and may not miss more than three of them during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at practice will be recorded by the lecturer. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed practices must be made up for at a later date, being discussed with the tutor.

B, for a grade:

During the semester research paper is written. The research paper consists of literature study and case study. By the end of the semester the research paper is presented by the students. The course ends in end-semester grade. The grade is calculated as

- 50% from mid-term test
- 25% from submitted paper.
- 25% from presentation of the project

The minimum requirement for passing is 60%, the grade for the final mark is given according to the following (score/grade): 0-59 % = fail (1); 60-69 % = pass (2); 70-79 % = satisfactory (3); 80-89 % = good (4); 90-100 % = excellent (5).

Reconstruction

Code: MK5REKOM04M317-EN

ECTS Credit Points: 4

Evaluation: mid-semester grade

Year, Semester: 2nd year, 1st semester

Number of teaching hours/week (lecture + practice): 2+2

Topics:

During the semester students are familiar with the whole process (steps, phases) of the building reconstruction.

Literature:

Compulsory:

- Edward Allen, Joseph Iano (2013): Fundamentals of Building Construction: Materials and Methods. Wiley; 6 edition. ISBN-10: 1118138910
- Madan L Mehta, Walter Scarborough, Diane Armpriest (2012): Building Construction: Principles, Materials, & Systems. Pearson; 2 edition. ISBN-10: 0132148692
- Francis D. K. Ching (2014): Building Construction Illustrated. Wiley; 5 edition. ISBN-10: 1118458346*Recommended:*

3 rd week:
Lecture: Status survey II.
Practice: Making of documents, photographs, site plan, floor plan
5 th week:
Lecture: Examination of external structural
elements I.
Practice: Plinth, pattern, cellar
7 th week:
Lecture: Structure analysis
Practice: Slab, roofing
10 th week:
Lecture: Examination of internal structural elements II.
Practice: Slab, balcony, internal slab

11 th week:	12 th week:
Lecture: Examination of internal structural	Lecture: Roof structure examination I.
elements III. Practice: Examination of partition walls and masonry walls, substrate, crack, water test	Practice: Flat roof, water, heat and sound insulation, sloping concrete
13 th week:	14 th week:
13 th week: Lecture: Roof structure examination II.	14 th week: Lecture: Roof structure examination III.
13 th week: Lecture: Roof structure examination II. Practice:High roof, beams	14 th week: Lecture: Roof structure examination III. Practice: Rafters and roof rails
13 th week: Lecture: Roof structure examination II. Practice:High roof, beams 15 th week: 2 nd drawing week	14 th week: Lecture: Roof structure examination III. Practice: Rafters and roof rails

A, for a signature:

Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three practice classes during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students can't take part in any practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed practice classes must be made up for at a later date, being discussed with the tutor.

During the semester there is one test: the end-term test is on the 15th week. Students must sit for the test.

B, for a grade:

The course ends in a mid-semester grade based on the one test.

The minimum requirement of the mid-term and the end-term test is 60% separately. The grade for each test is given according to the following (score/grade): 0-59 % = fail (1); 60-69 % = pass (2); 70-79 % = satisfactory (3); 80-89 % = good (4); 90-100 % = excellent (5).

If the score of any test is below 60, the student once can take a retake test of the whole semester material.

Construction Management III

Code: MK5EPS3M04M317-EN ECTS Credit Points: 4 Evaluation: mid-semester grade Year, Semester: 2nd year, 2ndsemester Prerequisite: **Organization of Construction Processes in BIM Environment**

Topics:

This course is focusing on various scopes of BIM. Main topics are data standardization and the benefits of model based estimating.

Literature:

Compulsory:

• BIM Forum: Level Of Development Specification. BIM Forum, Digitally printed: 2019 April. 256 pp.

Schedule

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Introduction, BIM overview	Lecture: Level of Development Specification
Practice: Vico Office software demo and intro training	Practice: Database building - LOD
4 th week:	5 th week:
Lecture: Construction Classification	Lecture: 3D planning and quantity takeoff
Standards	Practice: Database building - Quantification
Practice: Database building - Work breakdown structure	
6 th week:	7 th week:
Lecture: Model-based cost planning	Lecture: Model-based schedule planning
Practice: Cost planning in Vico Office	Practice: Schedule planning in Vico Office
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Virtual construction workflows 1	Lecture: Virtual construction workflows 2
Practice: Project communication 1	Practice: Project communication 2

Requirements

A, for a signature:

Participation at practice classes is compulsory. Students must attend practice classes and may not miss more than three occasions during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Students can't take part in any practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed practice classes must be made up for at a later date, being discussed with the tutor.

B, for a grade:

The course ends in mid-semester grade based on a homework assignment.

The grade is given according to the following (score/grade): 0-59 % = fail (1); 60-69 % = pass (2); 70-79 % = satisfactory (3); 80-89 % = good (4); 90-100 % = excellent (5). In case of fail, students will have a chance to resend the fixed assignment.

Subject group "Differentiated Field-Specific Subjects" for Industrial Process Engineering specialization

Production Technologies

Code: MK5TERMM04M217-EN ECTS Credit Points: 4 Evaluation: mid-semester grade Year, Semester: 1st year, 1st semester Number of teaching hours/week (lecture + practice): 1+3

Topics:

The aim of this course is to develop the systematic approach and process-oriented thinking of the students which allows them to select the related technical fields with complex technical equipment design, operation and development. The course is aimed at the integration of systems thinking mainly to the introduction of the use of modern tools and typical process, manufacturing control engineering design tasks.

Literature:

Compulsory:

Mikell P. Groover (2014): Fundamentals of Modern Manufacturing, Danvers, MA, John Wiley & sons, Inc.

Schedule

1st wook Degistration wook

I week negistration week		
2 nd week:	3 rd week:	
Lecture: Introduction and Basic concepts of Manufacturing	Lecture: Processing of ceramics and cements	
Practice: Laboratory safety, Engineering Materials	Practice: Handmade technologies of ceramics, Bulk deformation of clay	
4 th week:	5 th week:	
Lecture: Shaping processes in glassworking	Lecture: Shaping processes for plastics	
Practice: Product design Consideration	Practice: Vacuum forming, Additive technology	
6 th week:	7 th week:	
Lecture: Processing of Polymer Matrix Composites	Lecture: Manufacturing technology of composite materials	
	Practice: Making of Bio composite structure	

Practice: Making of carbon fiber reinforced PMC	
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Fundamentals of metal casting.	Lecture: Property-Enhancing operations
Metal casting processes	Practice: Heat treatment of steel
Practice: Metal casting	
11 th week:	12 th week:
Lecture: Bulk deformation processes in	Lecture: Particulate processing
metalworking	Practice: Materials and products for
Practice: Sheet metalworking	Powder Metallurgy
13 th week:	14 th week:
Lecture: Surface processing operations	Lecture: Joining and Assembly Processes
Practice: Ceramic Coating Process with fired enamel technics	Practice: Soldering, adhesive bonding, mechanical assembly
15 th week: 2 nd drawing week	

A, for a signature:

Participation at lectures is compulsory. Students must attend lectures and may not miss more than three of them during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at lectures will be recorded by the lecturer. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed lectures must be made up for at a later date, being discussed with the tutor.

The minimum requirement of the mid-term and the end-term test is 60 % separately. At the end of the semester everybody will get a mid-semester grade on the basis of the table below: The grade for each test is given according to the following (score/grade): 0-59 % = fail (1); 60-69 % = pass (2); 70-79 % = satisfactory (3); 80-89 % = good (4); 90-100 % = excellent (5).

If the score of any test is below 60 point, the student once can take a retake test of the whole semester material. If somebody fails, then he/she must write both tests in the 1st week of the exam period again. If the result is 60 % or better the retake test is success. If somebody must repeat his midterm tests, then his grade can't be better than (2).

B, for a grade:

The grade will be the average of the two test's grade. If it is for example (3.5) then the lecturer decides if it is (3) or (4).

Cellular Manufacturing

Code: MK5GYCELM04M217-EN ECTS Credit Points: 4 Evaluation: exam Year, Semester: 1st year, 2ndsemester Number of teaching hours/week (lecture + practice): 2+2

Topics:

In this course, we will cover the following topics: design of different manufacturing systems, design and control of cellular manufacturing systems. Push and Pull logistics systems. LEAN based cell planing. LEAN based cell scheduling by HEIJUNKA. At the end of the semester the students should be have a basic understanding of the design, operation and control of cellular manufacturing systems and be able to use quantitative methods to model, analyze, and optimize such systems.

Literature:

Compulsory:

- N. Singh, D. Rajamani: Cellular Manufacturing Systems: Design, planning and control 1996th Edition ISBN-10: 041255710X
- Nahmias, S. 2004. Production and Operations Analysis. 5th Edition. McGraw Hill/Irwin. ISBN 0-07-241741-2

3 rd week:
Lecture: Types of cellular
Practice: Case studies
5 th week:
Lecture: Intelligent automation
Practice: Jidoka tools
7 th week:
Lecture: Production flow analysis
Practice: Methods of flow analysis
10 th week:
Lecture: Standard work

Practice: Technics of optimizing the number of workers	Practice: methods of planning standard work
11 th week:	12 th week:
Lecture: Flexible manufacturing	Lecture: One piece flow
Practice: Control of cellular flexible manufacturing systems	Practice: Lot streaming
13 th week:	14 th week:
Lecture: Multi process handling	Lecture: Combined cellular Manufacturing
Practice: Case studies	Practice: Case studies
15 th week: 2 nd drawing week	

A, for a signature:

Participation in practice classes is compulsory. Students must attend practice classes and they do not have more than three absence during the semester. In case a student does so, they will not get a signature for the subject, and they must repeat the course. Students cannot take part in any other practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. Delayed practice classes will be held on a later date, which will be discussed with the professor.

During the semester there are two tests: the mid-term test on the 8th week and the end-term test on the 15th week. Students must take the tests.

B, for a grade:

The course ends up with an exam based on the average result of the two tests.

The minimum requirement of the mid-term and the end-term test is 60% in each test. The grade for each test is given according to the following (score/grade): 0-59 % = fail (1); 60-69 % = pass (2); 70-79 % = satisfactory (3); 80-89 % = good (4); 90-100 % = excellent (5).

If the score of any test is below 60, the student once can take a retake test of the whole semester material.

Complex Project

Code: MK5KOMPM04M217-EN and MK5KOMPM04M117-EN ECTS Credit Points: 4 Evaluation: mid-semester grade Year, Semester: 2nd year, 1stsemester Number of teaching hours/week (lecture + practice): 0+4

Topics:

In particular, the course will be focused on the student's ability development to manage complex exercises and implement technical, economic, financial and management tasks so that students are able to make comprehensive, comparative and scientific analysis. The course is highly interactive with challenging complex problem solving, team work, individual presentation and case studies.

The course focuses on the theory and application of the following:

Collection of data; The method of data processing and analysis; evaluation of data, data visualizing, interpretation of results. Strategy planning, performance measurement, handle cost constraints, examination of the change in a complex project environment, strategies for identifying and handling scope creep, risk management planning.

Literature:

Compulsory:

- Brealey, R. A. Myers, S. C. Allen, F (2014): Principles of Corporate Finances. 11th Edition. McGraw-Hill/Irwin, 2014. ISBN-13: 9780077151560.
- Ploccak, J. Remington, K. (2012): Tools for Complex Projects. Gower Publishing, Ltd., 2012. ISBN 1409458725, 9781409458722.

Recommended:

- Wysocki, R. K. (2011): Executive's Guide to Project Management: Organizational Processes and Practices for Supporting Complex Projects. John Wiley & Sons, 2011. ISBN 1118089243, 9781118089248
- Stefano Gatti (2013): Project Finance in Theory and Practice Designing, structuring and financing private and public projects ELSEVIER INC.
- Correia, C. Flynn, D. K. Besley Ulian, E. Wormald, M. (2012): Financial Management. 6th edition. Juta and Company Ltd. ISBN: 0702171573, 9780702171574.
- Yogesh Kumar Singh (2006): Fundamental Of Research Methodology And Statistics. New Age International, 2006. ISBN 8122418864, 9788122418866.

1 st week Registration week		
2 nd week:	3 rd week:	
Practice: Structure of Construction Investment	Practice: documents, plans, permissions Historical	
4 th week:	5 th week:	
Practice: Authorization documents	Practice: Prime contractor selection criteria	
6 th week:	7 th week:	
Practice: Building contract and peculiarities	Practice: Participants in building processes, tasks, responsibilities	

8 th week: 1 st drawing week	
9 th week:	10 th week:
Practice: Storage, depositing and logistics of building materials	Practice: Substructure works
11 th week:	12 th week:
Practice: Structural works	Practice: Finishing works
13 th week:	14 th week:
Practice: Area retrieval and protocol	Practice: Warranty, Own project presentation
15 th week: 2 nd drawing week	

A, for signature:

Participation at practice is compulsory. Student must attend the practices and my not miss more than three practice during the semester. In case a student misses more than three, the subject will not be signed and the student must repeat the course. Student can't make up a practice with another group. The attendance on practice will be recorded by the practice leader. Being late is counted as an absence. In case of further absences, a medical certificate needs to be presented. Missed practices should be made up for at a later date, to be discussed with the tutor. Students are required to bring the necessary utensil (e.g. calculator) for the course with them to each practice. Active participation is evaluated by the teacher in every class. If student's behavior or conduct doesn't meet the requirements of active participation, the teacher may evaluate their participation as an absence due to the lack of active participation in class.

During the semester there are two tests: the mid-term test is in the 7th week and the end-term test in the 14th week. Students have to sit for the tests.

B, for grade:

The minimum requirement of the mid-term test and the end-term test is 50% separately. The course ends in mid-semester grade, the grade is calculated as:

- 30%-30% from the two tests,
- 40% from the result of the teamwork.

The minimum requirement for passing is 50%, the grade for the final mark is given according to the following (score/grade): 0-49 % = fail (1); 50-62 % = pass (2); 63-75 % = satisfactory (3); 76-88 % = good (4); 89-100 % = excellent (5).

If the score of any test is below 50%, the student once can take a retake test of the whole semester material

Advanced Applied Engineering

Code: MK5OPERM04M217-EN ECTS Credit Points: 4 Year, Semester: 2st year, 1nd semester Evaluation: mid-semester grade Number of teaching hours/week (lecture + practice): 2+2

Topics:

In the frame of advanced applied engineering students are going to continue their study in the field of operations research. Uncertain feature of real business problems is included, by which students can carry out a complete analysis of a given problem. Important advanced models are discussed, such as multi-objective linear programming, multi-period production planning, facility location problems, etc. At the end of the course a complex project will be given to the students, which relies on the previously acquired material.

Literature:

Compulsory:

- Cliff T. Ragsdale: Spreadsheet Modeling & Decision Analysis, 8th edition, 2017, ISBN: 9781305947412
- Wayne L. Winston: Operations research: Applications and Algorithm, 4th Edition, Brook/Cole, Canada, 2004, ISBN: 978-0534380588
- George B. Dantzig: Linear Programming and Extensions, Princeton University Press, 1998, ISBN: 978-0691059136

1 st week Registration week		
2 nd week:	3 rd week:	
Lecture: Revision of Applied Engineering course	Lecture: Decision making under uncertainty	
Practice: Computer related practice – Modell creation, sensitivity analysis	Practice: Computer related practice – Decision making under uncertainty	
4 th week:	5 th week:	
Lecture: Decision making under uncertainty	Lecture: Multi-objective linear programming	
Practice: Computer related practice – Decision making under uncertainty	Practice: Computer related practice – Multi-objective linear programming	
6 th week:	7 th week:	
Lecture: Multi-objective linear programming	Lecture: Deterministic Multi-period programming	
Practice: Computer related practice – Multi-objective linear programming	Practice: Computer related practice – Multi period models for production	

8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Deterministic Multi-period programming Practice: Computer related practice – Multi period models for production	Lecture: Queuing theory Practice: Computer related practice – Queuing theory
11 th week:	12 th week:
Lecture: Facility location design	Lecture: Facility location design
Practice: Computer related practice – Facility location design	Practice: Computer related practice – Facility location design
13 th week:	14 th week:
Lecture: Complex project solving	Lecture: Complex project solving
Practice: Complex project solving	Practice: Complex project solving

15th week: 2nd drawing week

Requirements

A, for a signature:

Participation at practices is compulsory. Students must attend practices and may not miss more than three of them during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at lectures and practices will be recorded by the lecturer. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed lectures must be made up for at a later date, being discussed with the tutor.

B, for a grade:

The course ends in end-term test. The grade for the test is given according to the following table:

Score	Grade
0-59	fail (1)
60-69	pass (2)
70-79	satisfactory (3)
80-89	good (4)
90-100	excellent (5)

C, Etiquette:

A large portion of class time is spent sharing opinions and sharing information. Therefore, it is of utmost importance to communicate with courtesy and professionalism. Professional courtesy includes respecting others' opinions, being courteous and respectful, and working together in the spirit of cooperation. Discussions and assignments

will be graded on quality and professionalism. Please refrain from using cell phones or other disruptive electronic devices while attending class, and please silence all sounds made by such devices while class is in session.

D, Use of English:

In accordance with Faculty Policy, students may be penalized up to 10% of the marks on all assignments, tests, and examinations for the improper use of English.

System Engineering

Code: MK5RENDM04M217-EN and MK5RENDM04M117-EN ECTS Credit Points: 4 Evaluation: mid-semester grade Prerequisites: on Industrial Process Engineering specialization: Advanced Applied Engineering on Material Handling and Logistics specialization: Supply Chain Informatics System Year, Semester: 2nd year, 2ndsemester Number of teaching hours/week (lecture + practice): 2+2

Topics:

This course in systems engineering examines the principles and process of creating effective systems to meet application demands. Concepts, problems, and methods of systems engineering are introduced in lectures and discussions and applied in assignments and through semester-long group projects.

Literature:

Compulsory:

• Kossiakoff, A., Sweet, W. (2003). Systems Engineering Principles and Practice. John Wiley and Sons, Inc: Hoboken, New Jersey. ISBN 0-471- 23443-5

1 st week Registration week		
2 nd week:	3 rd week:	
Lecture: Definition of a system	Lecture: Structure of a complex system	
Practice: Case studies	Practice: Fault-tree analysis	
4 th week:	5 th week:	
Lecture: The system life cycle	Lecture: Quality function deployment	
	Practice: Different dimensions of QFD	

Practice: Case studies of Life-cycle cost analysis	
6 th week:	7 th week:
Lecture: Maintainability Engineering	Lecture: Advanced System Quality Planning
Practice: MTA and RCM tools	Practice: The steps and methods of ASQP
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Needs analysis, Risk analysis	Lecture: Quality function deployment
Practice: VOC investigation, Risk factor calculation and risk reporting	Practice: Requirements of system

Participation at practices is compulsory. Students must attend practices and may not miss more than three of them during the semester. In case a student does so, the subject will not be signed and the student must repeat the course. Attendance at lectures and practices will be recorded by the lecturer. Being late is equivalent with an absence. In case of further absences, a medical certification needs to be presented. Missed lectures must be made up for at a later date, being discussed with the tutor.

B, for a grade:

The course ends in end-term test. The grade for the test is given according to the following (score/grade): 0-59 % = fail (1); 60-69 % = pass (2); 70-79 % = satisfactory (3); 80-89 % = good (4); 90-100 % = excellent (5).

Subject group "Differentiated Field-Specific Subjects" for Material Handling and Logistics specialization

Digital Logistics

Code: MK5DILOM04M117-EN ECTS Credit Points: 4 Evaluation: mid-semester grade Year, Semester: 1st year, 1stsemester Number of teaching hours/week (lecture + practice): 1+3

Topics:

There is widespread recognition among leaders in most industries that the role of digital technology is rapidly shifting, from being a driver of marginal efficiency to an enabler of fundamental innovation and disruption. While it is clear that digital technology will transform most industries, there are a number of challenges that need to be understood and addressed. This course is about the latest developments and trends from the digitalization of business and society affecting logistics during that what is called the Fourth Industrial Revolution.

Focus of the course: effects of digitization on management and technical facilitation of material flows in supply chains.

Literature:

Compulsory:

- Wang, Y.; Pettit, S: E-Logistics, Pearson Education, 2012
- Graham, D.; Manikas, I.; Folinas, D. K.: E-Logistics and E-Supply Chain Management, Eurospan Group, 2013
- Ross, D. F.: Introduction to e-Supply Chain Management, CRC Press, 2002

Recommended:

1st week Registration week

- Arnold, J. R. Tony; Chapman, Stephen N.; Clive, Lloyd M.: Introduction to Materials Management, Pearson Education, 2014
- Grant, David B.: Logistics Management, Pearson Education, 2012

I WEEK REBISTRATION WEEK	
2 nd week:	3 rd week:
Lecture: Key concepts of material handling,	
logistics and supply chain management -	

the effects of global business and industry digitization. Practice: Case study	Lecture: The digital transformation of logistics: Threats and opportunities. Practice: Case study
4 th week:	5 th week:
Lecture: Digitalization inpurchasing, procurement and inbound logistics. Practice: Case study	Lecture: Industry 4.0 - Intelligent operations and material management in production logistics and packaging. Practice: Case study
6 th week:	7 th week:
Lecture: Distribution - impact of e- commerce on logistics	Lecture: Warehousing and inventory management - systems and software.
Practice: Case study	Practice: Case study
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Transportation - self driving	Lecture: Case study
andautonomous vehicles, e-Fleet management.	Practice: Case study
Practice: Case study	
11 th week:	12 th week:
Lecture: Telematics & Telematics Technology, Reverse logisticsand circular economy, Workforce and consumers in the Digital Era. Sharing economy or Uberization	Lecture: Progression of capabilities: functional excellence, Progression of capabilities: enterprise logistics management
Practice: Case study	Practice: Case study
13 th week:	14 th week:
Lecture: Progression of capabilities: supply chain integration and collaboration	Lecture: IoT, cloud, digital supply chain and machine learning vs boxes-and-materials
Practice: Case study	supply chain - new business models
	Practice: Case study

15th week: 2nd drawing week

Requirements

A, for a signature:

- attendance on study trips
- attendance on the prescribed lectures of scientific and trade conferences
- attendance on at least 60% of course lectures

B, for a grade:

- individual or group analysis of a digital logistics case study
- presentation of the case study

Advanced Production Logistics

Code: MK5HTLOM04M117-EN ECTS Credit Points: 4 Evaluation: exam Year, Semester: 1st year, 2ndsemester Number of teaching hours/week (lecture + practice): 2+2

Topics:

In this course, students are taught different material flow techniques, which can be applied in push and pull logistics system. This course covers these fields: planning line capacity, planning work in process, planning material flow, planning material supply.

Literature:

Compulsory:

- Nahmias, S. 2004. Production and Operations Analysis. 5th Edition. McGraw Hill/Irwin. ISBN 0-07-241741-2
- Askin, R.G. and J.B. Goldberg. 2002. Design and Analysis of Lean Production Systems. John Wiley & Sons Inc. ISBN 0-471-11593-2

1 st week Registration week	
2 nd week:	3 rd week:
Lecture: Total Flow Management Model	Lecture: Capacity planning
Practice: Production flow	Practice: Line capacity planning
4 th week:	5 th week:
Lecture: Push flow	Lecture: Material flow scheduling
Practice: I. MRP II	Practice: Heijunka
6 th week:	7 th week:
Lecture: Standard work	Lecture: Inventory in the material flow
Practice: methods of standard work planning	Practice: Supermarket design
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Inventory in the material flow, Pull	Lecture: Pull flow
flow	Practice: MTO planning
Practice: Puffer design, MTS planning	

11 th week:	12 th week:
Lecture: Mizusumashi and milk run	Lecture: Techniques of components' supply
Practice: Material flow in manufacturing	Practice: Methods of continuous supply
13 th week:	14 th week:
Lecture: Techniques of components' supply	Lecture: Techniques of components' supply
Practice: Methods of continuous supply	Practice: Sequential supply
15 th week: 2 nd drawing week	

A, for a signature:

Participation in practice classes is compulsory. Students must attend practice classes and they do not have more than three absence during the semester. In case a student does so, they will not get a signature for the subject, and they must repeat the course. Students cannot take part in any other practice class with another group. Attendance at practice classes will be recorded by the practice leader. Being late is equivalent with an absence. Delayed practice classes will be held on a later date, which will be discussed with the professor.

During the semester there are two tests: the mid-term test on the 8th week and the end-term test on the 15th week. Students must take the tests.

B, for a grade:

The course ends up with an exam based on the average result of the two tests.

The minimum requirement of the mid-term and the end-term test is 60% in each test. The grade for each test is given according to the following table:

Score	Grade
0-59	fail (1)
60-69	pass (2)
70-79	satisfactory (3)
80-89	good (4)
90-100	excellent (5)

If the score of any test is below 60, the student once can take a retake test of the whole semester material.

Complex Project

Code: MK5KOMPM04M217-EN and MK5KOMPM04M117-EN

ECTS Credit Points: 4

Evaluation: mid-semester grade

Year, Semester: 2nd year, 1stsemester

Number of teaching hours/week (lecture + practice): 0+4

Topics:

In particular, the course will be focused on the student's ability development to manage complex exercises and implement technical, economic, financial and management tasks so that students are able to make comprehensive, comparative and scientific analysis. The course is highly interactive with challenging complex problem solving, team work, individual presentation and case studies.

The course focuses on the theory and application of the following:

Collection of data; The method of data processing and analysis; evaluation of data, data visualizing, interpretation of results. Strategy planning, Process modelling, artefact building. Problem solving by design science research in the frame of Business Process Management (BPM).

Literature:

Compulsory:

- Brealey, R. A. Myers, S. C. Allen, F (2014): Principles of Corporate Finances. 11th Edition. McGraw-Hill/Irwin, 2014. ISBN-13: 9780077151560.
- Ploccak, J. Remington, K. (2012): Tools for Complex Projects. Gower Publishing, Ltd., 2012. ISBN 1409458725, 9781409458722.

Recommended:

- Wysocki, R. K. (2011): Executive's Guide to Project Management: Organizational Processes and Practices for Supporting Complex Projects. John Wiley & Sons, 2011. ISBN 1118089243, 9781118089248
- Stefano Gatti (2013): Project Finance in Theory and Practice Designing, structuring and financing private and public projects ELSEVIER INC.
- Correia, C. Flynn, D. K. Besley Ulian, E. Wormald, M. (2012): Financial Management. 6th edition. Juta and Company Ltd. ISBN: 0702171573, 9780702171574.
- Yogesh Kumar Singh (2006): Fundamental Of Research Methodology And Statistics. New Age International, 2006. ISBN 8122418864, 9788122418866.

1 st week Registration week	
2 nd week:	3 rd week:
Practice: Design Science Research	Practice: Four main types of Quantitative research: Descriptive, Correlational, Causal-Comparative
4 th week:	5 th week:
Practice: Steps of complex problem solving in the field of Business Process Management (BPM)	Practice: Process Modelling by EPC (Event- driven Process Chain diagram)

6 th week: Practice: Planning and scheduling of complex project by research plan	7th week: Practice: Project scheduling by logical framework
8 th week: 1 st drawing week	
9 th week:	10 th week:
Practice: Process analysis and root cause identification.	Practice: Ranking of potential root causes by FMEA (Failure Mode and Effect analysis)
11 th week:	12 th week:
Practice: Artefact building and evaluation of possible solutions	Practice: Planning the future state of business processes by advanced technique
13 th week:	14 th week:
Practice: Team complex project work	Practice: Team complex project work.
15 th week: 2 nd drawing week	

Requirements

A, for signature:

Participation at practice is compulsory. Student must attend the practices and my not miss more than three practice during the semester. In case a student misses more than three, the subject will not be signed and the student must repeat the course. Student can't make up a practice with another group. The attendance on practice will be recorded by the practice leader. Being late is counted as an absence. In case of further absences, a medical certificate needs to be presented. Missed practices should be made up for at a later date, to be discussed with the tutor. Students are required to bring the necessary utensil (e.g. calculator) for the course with them to each practice. Active participation is evaluated by the teacher in every class. If student's behavior or conduct doesn't meet the requirements of active participation, the teacher may evaluate their participation as an absence due to the lack of active participation in class.

During the semester there are two tests: the mid-term test is in the 7th week and the endterm test in the 14th week. Students have to sit for the tests. During the semester a complex problem-solving process has to be performed in team work. Result of team work is counted into the final grade.

B, for grade:

The minimum requirement of the mid-term test and the end-term test is 50% separately. The course ends in mid-semester grade, the grade is calculated as:

- e course enus in mid-semester grade, the grade is ca
 - 30%-30% from the two tests,
 - 40% from the result of the teamwork.

The minimum requirement for passing is 50%, the grade for the final mark is given according to the following (score/grade): 0-49 % = fail (1); 50-62 % = pass (2); 63-75 % = satisfactory (3); 76-88 % = good (4); 89-100 % = excellent (5).

If the score of any test is below 50%, the student once can take a retake test of the whole semester material

Advanced Warehouse Systems

Code: MK5KORAM04M121-EN ECTS Credit Points: 4 Evaluation: mid-semester grade Year, Semester: 2nd year, 1stsemester Number of teaching hours/week (lecture + practice): 2+2

Topics:

The aim of the course is to get acquainted with storage systems. Gets acquainted with the connections and peculiarities of the storage process. Coordinate warehouse product identification methods and communication with production and external actors.

Literature:

Compulsory:

Hompel Michael ten: Warehouse Management, Springer-Verlag 2006, ISBN13 (EAN): 9783540352181

Edward Frazelle: World-Class Warehousing and Material Handling,McGraw hill 2015, ISBN-13: 978-0071842822

Recommended:

Stuart Emmett: Excellence in Warehouse Management: How to Minimise Costs and Maximise Value, Wiley 2005, ISBN: 978-0-470-01531-5

Max Muller: Essentials of Inventory Management, HarperCollins Leadership 2019, ISBN13: 978-1400212378

Scott Keller, Brian Keller: Definitive Guide to Warehousing, The: Managing the Storage and Handling of Materials and Products in the Supply Chain (Council of Supply Chain Management Professionals), Pearson 2013, ISBN-13: 978-0133448900

John J. BARTHOLDI, Steven T. HACKMAN: WAREHOUSE & DISTRIBUTION SCIENCE, The Supply Chain and Logistics Institute School of Industrial and Systems Engineering Georgia Institute of Technology Atlanta, 2014

Schedule

1st week Registration week

2nd week:

3rd week:

Lecture: The main material flows and processes in a warehouse. Features and	Lecture: The process of storing bulk and piece goods. Comparison of piece storage
types of storage systems.	systems from several perspectives.
Practice: Case study	Practice: Case study & calculation task
4 th week:	5 th week:
Lecture: Aspects of the design of goods preparation spaces. Selection of storage systems by different methods	Lecture: Product identification systems. Bar Code, QR Code
Prosting: Case study	Practice: Case study & calculation task
Placifice: Case study	
6 th week:	7 th week:
Lecture: Product identification systems. RFID, Biometric, other specific identification systems.	Lecture: Specificity of order picking processes, materials handling and order picking workflow design.
Practice: Case study	Practice: Case study & calculation task
8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Traditional and automated material flow and storage of high traffic route planning and optimization.	Lecture: Communication with production characteristics and communication systems coordination.
Practice: Case study & planning task	Practice: Case study
11 th week:	12 th week:
Lecture: The typical logistics technology variations of storing. Planning of transporting connections and loading technology.	Lecture: Planning the dimensions of loading bays, and the goods preparation areas of warehouses Practice: Case study & calculation task
Practice: Case study & calculation task	
13 th week:	14 th week:
Lecture: Planning the topology and layout of storage systems in case of a very-narrow-aisle (VNA) system. The sizing tasks regarding to the applied storage equipments. How to create a	Lecture: Measures of the efficiency of storage systems. (rotation speed, area and volume utilization rates, inventory coverage time, operation, lead times, etc.) Practice: Case study & calculation task
logistics system plan of a warehousing	

Practice: Case study & Planning task

technology.

A, for a signature:

- attendance on study trips
- attendance on the prescribed lectures of scientific and trade conferences
- attendance on at least 60% of course lectures

B, for a grade:

Proper solution of an individual task

• Exam

Planning of Logistics Systems

Code: MK5LORTM04M121-EN ECTS Credit Points: 4 Evaluation: mid-semester grade Year, Semester: 2nd year, 2ndsemester Prerequisite: Advanced Production Logistics Number of teaching hours/week (lecture + practice): 2+2

Topics:

The aim of the course is to acquire the basics of the knowledge required for the design of logistics systems. Students will become acquainted with the general theory of systems design and then with its main features for logistics systems. The specific properties and planning process of logistics systems in case of plant facilities and external connection. The main steps and tasks of logistics system planning.

It is important to know how to create a logistics system plan in case of a plant logistics system. The facility layout planning techniques and methods, the systematic facility layout planning. The applied specific facility layout topologies and the mathematical modelling approaches of the theoretical facility layout planning problems. The material flow system architecture in a plant. The planning steps of the material flow systems in a plant. Inbound and outbound system planning steps, and realisation.

Literature:

Compulsory:
- Langevin Andre: Logistics Systems, Springer-Verlag New York 2005, ISBN13 (EAN): 9780387249711
- <u>Gianpaolo Ghiani</u>: Introduction to Logistics Systems Management, John Wiley 2013, ISBN: 1119943388

Recommended:

- Carlos F. Daganzo: Logistics Systems Analysis, Springer-Verlag Berlin 2010, ISBN: 3642062946
- Freitag Michael: Dynamics in Logistics, Springer 2016, ISBN13 (EAN): 9783319451169
- Bruce Robinson: Supply Chain Management: Planning and Operations, Clanrye 2016, ISBN: 1632405741

Schedule

1 st week Registration week								
2 nd week:	3 rd week:							
Lecture: The main steps and tasks of logistics system planning. Practice: Case study & calculation task	Lecture: The facility layout planning techniques and methods, the systematic facility layout planning.							
4 th week:	5 th week:							
Lecture: The applied specific facility layout topologies and the mathematical modelling approaches of the theoretical facility layout planning problems. Practice: Case study & calculation task	Lecture: The models of the value-creating objects, modelling the single, workshop, group and line-based logistics networks, supporting the decisions regarding the spatial layout. Choosing the theoretical layout planning models regarding the previous decided spatial layouts. Practice: Case study & planning task							
6 th week:	7 th week:							
Lecture: The material flow system architecture in a plant. The planning steps of the material flow systems in a plant Practice: Case study & calculation task	Lecture: The methodology of material flow system planning, the main heuristic and optimization modells. Analitical queueing theory models and simulation methods in the planning of facility logistics systems. Practice: Case study & planning task							

8 th week: 1 st drawing week	
9 th week:	10 th week:
Lecture: Issues in the design of external logistics systems. Economic challenges of transport frequencies and sizes Practice: Case study & calculation task	Lecture: Center search problems, basic tasks and different solution methods. Practice: Case study & calculation task
11 th week:	12 th week:
Lecture: Typical cases of freight planning, planning tasks and the basic solution methods and considerations.	Lecture: Integration of the basic arguments of lean philosophy in the planning process.
Practice: Case study & calculation task	Practice: Case study & planning task
13 th week:	14 th week:
Lecture: Scheduling customer needs, optimizing the logistics system Practice: Case study	Lecture: System KPIs and their continuous monitoring. Practice: Case study & calculation task

15th week: 2nd drawing week

Requirements

A, for a signature:

- attendance on study trips
- attendance on the prescribed lectures of scientific and trade conferences
- attendance on at least 60% of course lectures

B, for a grade:

• Exam

DIPLOMA

Within 30 days of the successful final exam the diploma is issued and given out by the Faculty at the graduate's special request. Otherwise, the diploma will be awarded to him/her at the graduation ceremony of the Faculty.

The diploma is an official document decorated with the coat of arms of Hungary which verifies the successful completion of studies in the Engineering Management master's program. The diploma contains the following data: name of HEI (higher education institution); institutional identification number; serial number of diploma; name of diploma holder; date and place of his/her birth; level of qualification; training program; specialization; mode of attendance; place, day, month and year issued. Furthermore, it has to contain the Rector's (or Vice-Rector's) original signature and the seal of HEI. The University keeps a record of the diplomas issued.

Calculating diploma grade

$$Grade = (\frac{01+02}{2} + T)/2$$

where

O1 and O2: Grades of the subjects of the final exam T: Grade awarded for defending thesis

Classification of the award:

Outstanding (5)	4,81 - 5,00
Excellent (5)	4,51 - 4,80
Good (4)	3,51 – 4,50
Satisfactory (3)	2,51 – 3,50
Pass (2)	2,00 – 2,50

The overall qualification of the degree certificate is *"With honours (5)" if* the student obtained grade 5 in all subjects of the final exam, the thesis grade is excellent and the grade average of all his/her other examination grades and seminar grades is minimum 4.00 or better. Moreover, he/she is not permitted to have a grade worse than grade good (4) during his/her studies.

		University of Debrecen	Faculty of Engineeri	ng												Cu	rrio	culu	ım	Full-Time	
		Engineering Management M	aster's (MSc) - Co	onst	ruc	tio	n Ir	ndu	str	y S	pe	cial	lisa	tio	n					Valid from September 2021	
N	Subject	Cubicat	Cada	1	. st sem	este	r	2	nd se	mest	er	3	3 rd se	mest	er	4	1 th s€	emes	ter	Des es entistes	
INF.	groups	Subject	Code	L	Р	Е	С	L	Ρ	Е	С	L	Ρ	Е	С	L	Ρ	E	C	Prerequisite	
1	_	Quantitative Methods	MK5KVANA04MX17-EN	2	2	m	4														
2	tural s	Applied Mathematics in Manufacturing Design	MK5AMTTM04MX18-EN	1	2	е	4														
3	if Na ence	Econometrics	MK5OKONM04MX17-EN					1	3	е	4										
4	sics c Scie	Introduction to Nanotechnology	MK5NANOM04MX17-EN					1	2	е	4										
5	Bas	Modeling and Systems Approach in the Mechanics of Structures	MK5MOMEM04MX21-EN													1	2	e	4	Applied Mathematics in Manufacturing Design	
6	pu	Development of Organization and Human Resource	MK5SZEMM04MX17-EN	2	2	e	4														
7	ics al nitie:	Advanced Corporate Finance	MK5HVLPM04MX17-EN	1	3	е	4														
8	imar	Negotiation and Conflict Management	MK5TKOMM04MX17-EN	1	2	m	4														
9	Ecor	International and Management Accounting	MK5NVSZM04MX17-EN									2	2	m	4						
10		Leadership Competencies Development	MK5KOMPM04MX17-EN													2	2	m	4		
11	ts	Applied Engineering	MK5ALKRM04MX17-EN					1	2	m	4										
12	al bject	Advanced Quality Management	MK5HMINM04MX17-EN					2	2	m	4										
13	siona y Sul	Operations Management	MK5HTEV2M04MX17-EN									2	2	e	4					Applied Mathematics in Manufacturing Design	
14	ofes	Project Leadership	MK5PROVM04MX17-EN				1		1			2	2	m	4						
15	Pr	Risk and Reliability	MK5KOCKM04MX17-EN	2	2	е	4														
16	3	Control of Integrated Information System	MK5INFRM04MX17-EN					1	3	е	4										
17	ts	Building Energetics II	MK5EEN2L04M321-EN	1	3	m	4														
18	scific Subjec	Organization of Construction Processes in BIM Environment	MK5EPE2M04M321-EN					2	2	e	4										
19	l-spe sory	Complex Project	MK5KOMPM04M317-EN					0	4	m	4										
20	Field	Reconstruction	MK5REKOM04M317-EN									2	2	m	4						
21	Соп	Construction Management III	MK5EPS3M04M317-EN													2	2	m	4	Organization of Construction Processes in BIM Environment	
22		Msc Thesis I	MK5DIP1M15MX21-EN									0	3	é	15						
23		Msc Thesis II	MK5DIP2M15MX21-EN													0	7	é	15	Msc Thesis I	
24	Optional	Optional Subject					3														
25	Subjects*	Optional Subject									3										
26		Industrial internship	MK5SZGYM00MX18-EN					4 we	eeks	s	0										
27	Criterium	Physical Education**	SI-003																		
28	505/2005	Work and Fire Safety	MUNKAVEDELEM			s	0														
				L	Р	Е	С	L	Ρ	Е	С	L	Ρ	Е	С	L	Ρ	E	С		
			Total / semester:	10	16		31	8	18		31	8	11		31	5	13		27	Total:	
			number of exam subjects			4				4				1				1		number of exam subjects	10
		number of m	id-semester grade subjects			3				3				3				2		number of mid-semester grade subjects	11
		number of co	mprehensive exam subjects			0				0				0				0		number of comprehensive exam subjects	0
			number of subjects			7				7	1			4				3		number of subjects	21
		number c	fteaching hours / semester	26				26				19				18				number of teaching hours	89
																				number of optional credits	6
																				total number of credits	120

MODEL CURRICULUM OF ENGINEERING MANAGEMENT MSC, Construction Industry Specialization

		University of Debrecen	ng Curriculu													um	Full-Time				
		Engineering Management Ma	aster's (MSc) - In	ndus	stria	al P	roc	ess	ess Engineering Special							lisa	tio	n		Valid from September 2021	
Nr	Subject	Subject	Codo	1	L st sem	este	r	2	e nd sei	mest	er	3	rd se	mest	er	4	th se	mest	er	Proroquisito	
INI.	groups	Subject	Code	L	Ρ	Е	С	L	Ρ	Е	С	L	Ρ	Е	С	L	Ρ	Е	С	Fielequisite	
1		Quantitative Methods	MK5KVANA04MX17-EN	2	2	m	4														
2	atural es	Applied Mathematics in Manufacturing Design	MK5AMTTM04MX18-EN	1	2	e	4														
3	of N.	Econometrics	MK5OKONM04MX17-EN					1	3	е	4										
4	sics Sci	Introduction to Nanotechnology	MK5NANOM04MX17-EN					1	2	е	4										
5	Ba	Modeling and Systems Approach in the Mechanics of Structures	MK5MOMEM04MX21-EN													1	2	e	4	Applied Mathematics in Manufacturing Design	
6	pu	Development of Organization and Human Resource	MK5SZEMM04MX17-EN	2	2	e	4														
7	cs ar ities	Advanced Corporate Finance	MK5HVLPM04MX17-EN	1	3	e	4														
8	iman	Negotiation and Conflict Management	MK5TKOMM04MX17-EN	1	2	m	4														
9	Ecor Hu	International and Management Accounting	MK5NVSZM04MX17-EN									2	2	m	4						
10		Leadership Competencies Development	MK5KOMPM04MX17-EN													2	2	m	4		
11	ts	Applied Engineering	MK5ALKRM04MX17-EN					1	2	m	4										
12	al bje c	Advanced Quality Management	MK5HMINM04MX17-EN					2	2	m	4										
13	sion 'Y Su	Operations Management	MK5HTEV2M04MX17-EN									2	2	е	4					Applied Mathematics in Manufacturing Design	
14	ofes ulsor	Project Leadership	MK5PROVM04MX17-EN									2	2	m	4						
15	I-d uc	Risk and Reliability	MK5KOCKM04MX17-EN	2	2	е	4														
16	ŭ	Control of Integrated Information System	MK5INFRM04MX17-EN					1	3	е	4										
17		Production Technologies	MK5TERMM04M217-EN	1	3	m	4														
18	ecific sory :ts	Cellular Manufacturing	MK5GYCELM04M217-EN					2	2	е	4										
19	d-spe Juqr Juqr	Complex Project	MK5KOMPM04M217-EN					0	4	m	4										
20	Field Con Su	Advanced Applied Engineering	MK5HALMM04M219-EN									2	2	m	4						
21		System Engineering	MK5RENDM04M217-EN													2	2	m	4	Advanced Applied Engineering	
22		Msc Thesis I	MK5DIP1M15MX21-EN									0	3	é	15						
23		Msc Thesis II	MK5DIP2M15MX21-EN													0	7	é	15	Msc Thesis I	
24	Optional	Optional Subject					3														
25	Subjects*	Optional Subject									3										
26	Critorium	Industrial internship	MK5SZGYM00MX18-EN					4 we	eeks	s	0										
27	Subjects***	Physical Education**	SI-003																		
28	-	Work and Fire Safety	MUNKAVEDELEM			s	0														
				L	Ρ	Е	С	L	Ρ	Е	С	L	Ρ	Е	С	L	Ρ	Е	С		
			Total / semester:	10	16		31	8	18		31	8	11		31	5	13		27	Total:	
			number of exam subjects			4				4				1				1		number of exam subjects	10
		number of m	id-semester grade subjects			3				3				3				2		number of mid-semester grade subjects	11
		number of cor	nprehensive exam subjects			0				0				0				0		number of comprehensive exam subjects	0
			number of subjects			7				7				4				3		number of subjects	21
		number o	f teaching hours / semester	26				26				19				18				number of teaching hours	89
																				number of optional credits	6
																				total number of credits	120

MODEL	CURRICULUM	OF ENGINEERI	IG MANAGEMENT	⁻ MSC. Industrial	Process Engineering	specialization
				,	0 0	

		University of Debrecen	Faculty of Engineering	ng	Curriculum											um	Full-Time				
		Engineering Management Ma	aster's (MSc) - M	ate	rial	Ha	ndl	ing	an	d L	ogi	sti	cs S	Spe	ecia	lisa	atio	on		Valid from September 2021	
Ne	Subject	Subject	Code	1	L st sem	ester	r	2 ⁿ	^{id} sen	neste	er	3	rd sei	mest	er	4	‡ th sei	neste	er	Drocoquisito	
INF.	groups	Subject	Code	L	Р	Е	С	L	Р	Е	С	L	Р	Е	С	L	Р	Е	С	Prerequisite	
1		Quantitative Methods	MK5KVANA04MX17-EN	2	2	m	4														
2	tural s	Applied Mathematics in Manufacturing Design	MK5AMTTM04MX18-EN	1	2	е	4														
3	of Na ence	Econometrics	MK5OKONM04MX17-EN					1	3	е	4										
4	sics c Scie	Introduction to Nanotechnology	MK5NANOM04MX17-EN					1	2	е	4										
5	Bas	Modeling and Systems approach in the mechanics of structures	MK5MOMEM04MX21-EN													1	2	e	4	Applied Mathematics in Manufacturing Design	
6	_	Development of Organization and Human	MK5SZEMM04MX17-EN	2	2	е	4														
7	s anc cies	Advanced Corporate Finance	MK5HVLPM04MX17-EN	1	3	е	4														
8	omic	Negotiation and Conflict Management	MK5TKOMM04MX17-EN	1	2	m	4														
9	conc	International and Management Accounting	MK5NVSZM04MX17-EN									2	2	m	4						
10	Ē	Leadership Competencies Development	MK5KOMPM04MX17-EN													2	2	m	4		
11	ts	Applied Engineering	MK5ALKRM04MX17-EN					1	2	m	4										
12	al bjec	Advanced Quality Management	MK5HMINM04MX17-EN					2	2	m	4										
13	siona y Sul	Operations Management	MK5HTEV2M04MX17-EN									2	2	е	4					Applied Mathematics in Manufacturing Design	
14	ofes ulsor	Project Leadership	MK5PROVM04MX17-EN									2	2	m	4						
15	Pr	Risk and Reliability	MK5KOCKM04MX17-EN	2	2	е	4														
16	ö	Control of Integrated Information System	MK5INFRM04MX17-EN					1	3	е	4										
17		Digital Logistics	MK5DILOM04M117-EN	1	3	m	4														
18	cific sory tts	Advanced Production Logistics	MK5HTLOM04M117-EN					2	2	е	4										
19	l-spe l'ult bjec	Complex Projekt	MK5KOMPM04M117-EN					0	4	m	4										
20	Fielc Corr Su	Advanced Warehouse Systems	MK5KORAM04M121-EN									2	2	m	4						
21	_	Planning of Logistics Systems	MK5LORTM04M121-EN													2	2	m	4	Advanced Production Logistics	
22		Msc Thesis I	MK5DIP1M15MX21-EN									0	3	é	15						
23		Msc Thesis II	MK5DIP2M15MX21-EN													0	7	é	15	Msc Thesis I	
24	Optional	Optional Subject					3														
25	Subjects*	Optional Subject									3										
26		Industrial internship	MK5SZGYM00MX18-EN					4 we	eks	S	0										
27	Subjects***	Physical Education**	SI-003																		
28	,	Work and Fire Safety	MUNKAVEDELEM			s	0														
				L	Р	E	С	L	Р	Е	С	L	Р	E	С	L	Ρ	E	С		
			Total / semester:	10	16		31	8	18		31	8	11		31	5	13		27	Total:	
			number of exam subjects			4				4			<u> </u>	1		<u> </u>	<u> </u>	1		number of exam subjects	10
		number of m	id-semester grade subjects			3				3				3			<u> </u>	2		number of mid-semester grade subjects	11
		number of cor	nprehensive exam subjects			0				0				0	<u> </u>	<u> </u>	<u> </u>	0		number of comprehensive exam subjects	0
			number of subjects			7				7			<u> </u>	4		<u> </u>		3		number of subjects	21
		number o	fteaching hours / semester	26				26				19				18				number of teaching hours	89
																				number of optional credits	6
																				total number of credits	120

MODEL CURRICULUM OF ENGINEERING MANAGEMENT MSC, MATERIAL HANDLING AND LOGISTICS SPECIALIZATION